首页 > 其他分享 >弹性伸缩落地实践

弹性伸缩落地实践

时间:2023-11-17 09:57:52浏览次数:35  
标签:伸缩 container 落地 default namespace 弹性 副本 HPA pod

弹性伸缩落地实践

1. 什么是 HPA ?

HPA(Horizontal Pod Autoscaler)是 Kubernetes 中的一种资源自动伸缩机制,用于根据某些指标动态调整 Pod 的副本数量。

2. 什么时候需要 HPA ?

  • 负载波动:当您的应用程序的负载经常发生波动时,HPA 可以自动调整 Pod 的副本数量,以适应负载的变化。例如,对于 Web 应用程序,在高峰期需要更多的副本以处理更多的请求,而在低谷期可以减少副本数量以节省资源。

  • 活动推广:当您的应用程序需要扩展以满足推广活动、新产品发布或突发事件带来的流量增加时,HPA 可以自动增加 Pod 的副本数量,以提供更高的容量和性能。这有助于保持应用程序的可用性和用户体验。

  • 定时弹性:大促期间,设置开始和结束时间,自动弹性扩缩容,不用人工干预,提高效率。

  • 节约成本:通过使用 HPA,您可以根据应用程序的负载需求自动调整 Pod 的副本数量。这可以帮助您避免过度分配资源,节省资源和成本。当负载较低时,HPA 可以减少副本数量,释放不必要的资源。

3. 原生 HPA 的不足

  • 使用率计算基于 resources.requests

  • 不支持定时扩缩容

4. KEDA

采用 KEDA 作为弹性伸缩系统的基座,主要考虑到如下优势点:

  • 功能丰富:内嵌 CPU/Cron/Prom 多种伸缩策略,原生支持缩容至零。

  • 扩展性好:解耦被伸缩对象(支持/scale 子资源即可)和伸缩指标,提供强大的插件机制和抽象接口(scaler + metrics adapter),增加伸缩指标非常便利。

  • 社区强大:CNCF 官方毕业项目,微软和 RedHat 强力支持。

4.1 工作原理

KEDA 监控来自外部指标提供程序系统(例如 Azure Monitor)的指标,然后根据基于指标值的缩放规则进行缩放。它直接与度量提供者系统通信。它作为 Kubernetes Operator 运行,它只是一个 pod 并持续监控。

img

KEDA 将 K8s Core Metrics Pipeline 和 Monitoring Pipeline 处理流程统一化,并内置多种 scaler ( link ),提供开箱即用的弹性策略支持,如常见的基于 CPU/Memory 的弹性策略、定时弹性等:

img

4. 最佳实践

说明:

原生Deployment对象不支持灰度发布策略,所以改用 Argo-Rollout 资源对象,下面示例均采用 Argo-Rollout 演示

4.1 定时弹性

4.1.1 后端模版

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
name: <appid>-cron
namespace: <env>
spec:
minReplicaCount: <origin-replicas>
scaleTargetRef:
  apiVersion: argoproj.io/v1alpha1
  kind: Rollout
  name: <appid>-default
triggers:
- type: cron
  metadata:
    timezone: Asia/Shanghai
    start: 30 * * * *
    end: 45 * * * *
    desiredReplicas: "10"

4.1.2 前端设计

支持三个周期

  • 按天

  • 按星期

  • 自定义 Cron 表达式

img

img

img

4.1.3 消息通知模版

定时HPA动态扩缩容提醒:

AppID:<appid>
归属环境:<env>
容器集群:<cluster>
开始扩容时间:30 11 * * 1
结束扩容时间:30 12 * * 1
容器数量变化:1 --> 2
触发时间:2023-11-13 12:35:16
如有疑问可参考:HPA使用文档,或咨询@SRE客服

4.2 基于资源的弹性

根据 cpu、mem 等资源使用率,自动扩缩容,低负载缩容,减小不必要资源占用,高负载自动扩容,保证应用有足够的资源使用。

4.2.1 后端模版(数据降噪)

说明:

基于 Prometheus 拉取真实资源使用情况,并屏蔽刚启动的 Pod

-default 为基线应用,cluster、zone 是 Prometheus remote_write 到 VictoriaMetrics 新增便签,便于区分集群和区域

VictoriaMetrics 是统一汇总、查询层,方便不同集群使用一套数据源

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
labels:
  scaledobject.keda.sh/name: <appid>
name: <appid>
namespace:<env>
spec:
maxReplicaCount: <max-replicas>
minReplicaCount: <origin-replicas>
scaleTargetRef:
  apiVersion: argoproj.io/v1alpha1
  kind: Rollout
  name: <appid>-default
triggers:
- metadata:
    metricName: cpu_utilization
    query: sum((sum (rate(container_cpu_usage_seconds_total{zone="<zone>",namespace="<env>",pod=~"<appid>-default.*",container!=""}[1m]))
      by(pod) and on(pod) time() - kube_pod_start_time{zone="<zone>",namespace="<env>",pod=~"<appid>-default.*"}
      > 150 )/( sum (container_spec_cpu_quota{zone="<zone>",namespace="<env>",pod=~"<appid>-default.*",container!=""})
      by(pod) /100000) * 100)
    serverAddress: http://<victoria-select>/select/1/prometheus
    threshold: "80"
  type: prometheus
- metadata:
    metricName: mem_utilization
    query: sum((sum by(pod) (container_memory_working_set_bytes{zone="<zone>",namespace="<env>",pod=~"<appid>-default.*",container!="",container!="POD"})
      and on(pod) time() -kube_pod_start_time{zone="<zone>",namespace="<env>",pod=~"<appid>-default.*"}>
      150) / sum by(pod) (container_spec_memory_limit_bytes{zone="<zone>",namespace="<env>",pod=~"<appid>-default.*",container!="",container!="POD"})*100)
    serverAddress: http://<victoria-select>/select/1/prometheus
    threshold: "80"
  type: prometheus

4.2.2 前端设计

img

4.2.3 消息通知模版

指标HPA动态扩缩容提醒:

AppID:<appid>
归属环境:<env>
容器集群:<cluster>
触发指标:cpu使用率(设定阈值为: 40.0%)
触发指标当前值:77.0%
容器数量变化:1 --> 2
触发时间:2023-11-16 10:38:40
如有疑问可参考:HPA使用文档,或咨询@SRE客服

4.3 基于业务指标的弹性

上生产前,在 UT 环境压测,确定 最大 QPS、最高接受的 RT、最大接受 消息积压数等,监控平台提供接口,根据阀值,自动扩容,自动应对突然流量或压力,保障应用稳定性。

4.3.1 后端模版

说明:

QPS 取自 CAT 数据,SRE这边将 CAT 数据使用工具写入到 VictoriaMetrics 中

前端设计、消息通知 和 基于资源的弹性使用的一套模版,都属于基于指标触发的 HPA,这里不再赘述

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
labels:
  scaledobject.keda.sh/name: <appid>
name: <appid>
namespace: <env>
spec:
maxReplicaCount: <max-replicas>
minReplicaCount: <origin-replicas>
scaleTargetRef:
  apiVersion: argoproj.io/v1alpha1
  kind: Rollout
  name: <appid>-default
triggers:
- metadata:
    metricName: http_requests_total
    query: sum(cat_url_info{appid="<appid>",type="count",env="<env>",assettype="docker",zone="<zone>",host=~"<appid>-default.*"})/60
    serverAddress: http://<victoria-select>/select/1/prometheus
    threshold: "1000"
  type: prometheus

4.4 补充说明

4.4.1 计算公式

 计算公式检查触发器间隔指标最新数据间隔备注
CPU 使用率 所有容器CPU使用率之和/ 容器数量 30s 30s 排除了刚启动的 Pod
MEM 使用率 所有容器MEM使用率之和 / 容器数量 30s 30s 排除了刚启动的 Pod
QPS 所有容器每秒的请求量 / 容器数量 30s 60s 最新数据为 上一分钟 QPS 的平均值

4.4.2 扩缩容默认触发时间

扩容时间

当检测结果大于设置的阈值时,立刻触发扩容,没有稳定窗口。

期望副本数 = ceil[当前副本数 * (当前指标 / 期望指标)]

⚠️ HPA 在计算目标副本数时会有一个10%的波动因子。如果在波动范围内,HPA 并不会调整副本数目。

缩容时间

稳定窗口的时间为 300 秒,满足缩容条件后,连续5分钟持续满足缩容条件,触发缩容

4.5 建立可观测性大盘

后续补充

4.6 注意事项(优雅上下线)

自动扩容大多数是在高并发大流量情况触发,此时如果没有对应的解决方案,就会产生短时间流量有损问题。

这里先说下问题,下篇文章会详细介绍具体场景及解决方案

标签:伸缩,container,落地,default,namespace,弹性,副本,HPA,pod
From: https://www.cnblogs.com/clay-wangzhi/p/17837919.html

相关文章

  • 10、弹性布局(Flex Expanded)
    自定义的IconContainerclassIconContainerextendsStatelessWidget{Colorcolor;IconDataicon;//IconContainer(this.icon,{super.key,requiredthis.color});//与下方效果一样//IconContainer(this.icon,{Key?key,requiredthis.color}):super(k......
  • 弹性云主机支持多种规格
    本文分享自天翼云开发者社区《弹性云主机支持多种规格》,作者:每日知识小分享随着云计算技术的快速发展,弹性云主机已经成为了一种广泛使用的云计算服务。弹性云主机是一种可动态调整的计算资源,可以根据用户的需求进行灵活配置。其中,支持多种规格是弹性云主机的一项重要特性,它可以让......
  • promise时效架构升级方案的实施及落地
    一、项目背景为什么需要架构升级promise时效包含两个子系统:内核时效计算系统(系统核心是时效计算)和组件化时效系统(系统核心是复杂业务处理以及多种时效业务聚合,承接结算下单黄金流程流量),后者依赖前者,分别由两组技术团队支持;因为有些业务的渗透造成两个系统的边界越来越不清晰;有......
  • css3 弹性盒子
    flex属性详解juejin.cn溪阳网页布局最早的时候,网页排版通常是通过table元素实现的,在table的单元格里使用align、valign来实现水平和垂直方向的对齐后来随着html语义化和CSS的发展,浮动布局和定位布局也出现了,还有text-align:center、verticle-align:center......
  • 改善Go语言编程质量的50个有效实践,技能落地总结50个高效Go程序设计技巧
    改善Go语言编程质量的50个有效实践,技能落地总结50个高效Go程序设计技巧 慕课专栏:《改善Go语言编程质量的50个有效实践》Go语言是Google大牛团队(RobertGriesemer、RobPike以及KenThompson)设计的一种静态类型、编译型编程语言,支持垃圾回收和轻量级并发,它于2009年11月诞......
  • 神策数据桑文锋:企业数字化客户经营落地,客户旅程编排是关键
    “数据为基、旅程引领,开启数字化经营新时代。”在神策2023数据驱动大会现场,神策数据创始人&CEO桑文锋围绕该主题展开分享。一、八年迭代,神策数据经营理念持续升级桑文锋基于对商业模式的思考,总结了企业面临的三个主要任务——价值创造、客户经营和效率提升。他表示,当前企业在......
  • 弹性盒子flex布局轻松实现瀑布流
    这里介绍下简单实现瀑布流的方法,适合一次性加载完的数据列表。如果是分页加载那就需要更复杂的计算了,但也可以在本案例的基础上进行扩展。关键代码:js部分:letcolumCount=2letgoodsList=this.properties.goodsList//创建跟列数相同的新列表letwaterFallArr=newArr......
  • NodeMananger弹性资源池实践
    1.背景在离线集群中,有些冷数据集群专用于存放HDFS数据,很少用来提供计算操作,这些机器的计算资源都浪费了,它们的典型特征是:只启动datanode服务,不启动nodemanager服务。为了提高这些机器的资源利用率,希望在其他计算集群需要资源的时候,resourcemanager可以在冷数据集群中启动NodeMana......
  • DDD技术方案落地实践
    1.引言从接触领域驱动设计的初学阶段,到实现一个旧系统改造到DDD模型,再到按DDD规范落地的3个的项目。对于领域驱动模型设计研发,从开始的各种疑惑到吸收各种先进的理念,目前在技术实施这一块已经基本比较成熟。在既往经验中总结了一些在开发中遇到的技术问题和解决方案进行分享。......
  • DDD技术方案落地实践 | 京东云技术团队
    1.引言从接触领域驱动设计的初学阶段,到实现一个旧系统改造到DDD模型,再到按DDD规范落地的3个的项目。对于领域驱动模型设计研发,从开始的各种疑惑到吸收各种先进的理念,目前在技术实施这一块已经基本比较成熟。在既往经验中总结了一些在开发中遇到的技术问题和解决方案进行分享。因为......