首页 > 其他分享 >理解线段树和主席树:解决区间操作的利器

理解线段树和主席树:解决区间操作的利器

时间:2023-11-09 15:47:35浏览次数:40  
标签:int 线段 st 利器 tl 区间 操作

在计算机科学和算法领域,区间操作问题是一类常见且重要的问题,它们涉及到在一维数据结构中执行查询和更新操作。线段树和主席树是两种用于解决这类问题的强大数据结构。本文将介绍这两种树状数据结构,以及它们在不同应用领域中的使用。

什么是线段树?

线段树是一种用于处理区间操作问题的数据结构,它的核心思想是将一维数据范围递归地划分为子区间,然后在树上组织这些区间以支持高效的操作。以下是线段树的关键概念:

  • 树结构: 线段树是一种树状结构,通常是一棵平衡二叉树。每个节点对应输入数组的一个区间。
  • 构建: 线段树可以在线性时间内构建,以将输入数据按位置组织到树的叶子节点中。这是通过递归划分区间来实现的。
  • 查询操作: 线段树允许高效地进行区间查询操作,如查询一个区间内的最小值、最大值、总和等。
  • 更新操作: 线段树支持高效的区间更新操作,如将一个区间内的元素增加一个固定值。

线段树的应用包括区间最小值、最大值查询,区间和查询,区间内的统计信息查询,区间内的排序操作等。

什么是主席树?

主席树,也被称为线段树带懒惰传播(Segment Tree with Lazy Propagation),是线段树的扩展版本。主席树在解决区间更新操作问题时非常有用。以下是主席树的关键概念:

  • 区别于线段树: 主席树与线段树的主要区别在于更新操作的处理方式。主席树使用懒惰传播技术,将更新操作推迟到必要时才执行。
  • 更新操作: 主席树的更新操作被推迟,以减少不必要的更新。这意味着只有当需要查询某个节点的信息时,才会执行相应的更新操作。
  • 应用: 主席树通常用于解决需要频繁区间更新操作的问题,如区间增加、减少、赋值等。

应用领域

线段树和主席树在各种应用领域中具有广泛的应用,包括:

  • 数据库管理系统:用于索引数据和执行范围查询。
  • 空间搜索和碰撞检测:用于处理多维空间中的对象。
  • 字符串匹配:用于处理字符串的匹配和搜索操作。
  • 编译器和解释器:用于语法分析和优化。
  • 图算法:用于处理图上的区间查询和更新操作。

示例

线段树和主席树是强大的数据结构,用于解决区间操作问题。它们的核心思想是将一维数据范围递归地划分为子区间,并在树上组织这些区间以支持高效的操作。在选择使用线段树或主席树时,需要根据具体问题的需求来决定。不管你选择哪个数据结构,它们都是解决区间操作问题的利器,可用于提高算法的效率和性能。下面是基于线段树实现的查找数组中第K大的元素的示例:

package main

import "fmt"

type SegmentTree struct {
	tree []int
}

func NewSegmentTree(n int) *SegmentTree {
	return &SegmentTree{
		tree: make([]int, 4*n), // 4 times the size of the input array to ensure space for the tree
	}
}

func (st *SegmentTree) build(arr []int, v, tl, tr int) {
	if tl == tr {
		st.tree[v] = arr[tl]
	} else {
		tm := (tl + tr) / 2
		st.build(arr, 2*v, tl, tm)
		st.build(arr, 2*v+1, tm+1, tr)
		st.tree[v] = st.tree[2*v] + st.tree[2*v+1]
	}
}

func (st *SegmentTree) queryKthLargest(v, tl, tr, k int) int {
	if tl == tr {
		return tl
	}

	tm := (tl + tr) / 2
	leftSum := st.tree[2*v]

	if leftSum >= k {
		return st.queryKthLargest(2*v, tl, tm, k)
	}
	return st.queryKthLargest(2*v+1, tm+1, tr, k-leftSum)
}

func findKthLargest(arr []int, k int) int {
	n := len(arr)
	segTree := NewSegmentTree(n)
	segTree.build(arr, 1, 0, n-1)
	kthLargestIndex := segTree.queryKthLargest(1, 0, n-1, n-k+1)
	return arr[kthLargestIndex]
}

func main() {
	arr := []int{3, 1, 4, 2, 7, 5, 6}
	k := 3
	result := findKthLargest(arr, k)
	fmt.Printf("The %dth largest element is: %d\n", k, result)
}

在这个示例中,我们定义了一个 SegmentTree 结构来表示线段树,然后使用 build 方法构建线段树,将数组的元素存储在树的叶子节点中。然后,我们使用 queryKthLargest 方法来查询第K大的元素的索引,最终在 findKthLargest 函数中返回第K大的元素。在示例用法中,我们使用给定的数组和K值来查找第K大的元素并打印结果。


孟斯特

声明:本作品采用署名-非商业性使用-相同方式共享 4.0 国际 (CC BY-NC-SA 4.0)进行许可,使用时请注明出处。
Author: mengbin
blog: mengbin
Github: mengbin92
cnblogs: 恋水无意


标签:int,线段,st,利器,tl,区间,操作
From: https://www.cnblogs.com/lianshuiwuyi/p/17821826.html

相关文章

  • Spring Boot:现代化Java应用开发的利器
    在当今的软件开发领域中,SpringBoot框架以其简洁、高效的特性成为了越来越多Java开发者的首选。本文将围绕SpringBoot框架展开讨论,深入探索其在现代化Java应用开发中的价值和影响。SpringBoot的背景与特点SpringBoot是由Pivotal团队创建的一个开源框架,它基于Spring框架,旨在简化S......
  • 工时测定:提升生产效率的关键利器
     工时测定在生产管理中具有重要意义,它可以帮助企业进行合理的生产计划和有效的资源分配,提高生产效率和质量,降低成本,增强企业的竞争力。ECRS工时分析软件提供了一系列功能模块,包括作业分析、标准工时、工时测量表、标准工时库、Excel版SOP、视频SOP、比较分析和线平衡分析,为企业提......
  • 线段树历史值
    P6242【模板】线段树3支持区间加,区间取\(\min\),区间求和,区间\(\max\),区间历史\(\max\)。先提一嘴吉司机。就是对线段树的每个节点记录最大值,严格次大值和最大值个数,只在\(se<v<mx\)的区间操作,否则向下递归。如果没有区间加,复杂度势能分析是\(O((n+m)\logn)\)的,否则为......
  • 原点到线段的垂足
    原理:1) 求出向量ao在ab上的投影距离2)a沿着ab方向移动投影距离就是垂足点的位置 //获得原点到直线ab的垂点publicstaticVector2GetPerpendicularToOrigin(Vector2a,Vector2b){varab=b-a;varao=Vector2.zero-a;floatproj=Vector2.D......
  • 正则可视化在线工具-更直观地理解和调试正则表达式的利器
    在工作和学习中,正则表达式是一种强大的工具,用于处理和分析文本数据。它可以帮助我们在海量数据中快速搜索、匹配和提取所需的信息。然而,正则表达式的语法复杂,很多人在编写和调试时可能会遇到困难。为了解决这个问题,我决定自己编写一个正则工具。这个工具旨在提供一个直观且用户友好......
  • 洛谷P3046 海底高铁 巧用差分统计经过区间次数
    洛谷P3046海底高铁-差分统计经过区间次数题目贴在这里P3406海底高铁-洛谷|计算机科学教育新生态(luogu.com.cn)分析本题题干很长,但是题意理解很简单。就是给定n个节点,每次仅能在相邻的两个节点之间移动,且任意两个节点之间的高铁费用也不一样。依据题意,假设从3节点到1......
  • js返回未来或过去7天等时间合集(任意日期区间合集)
    /***时间前后向前推算时间集合*@param{string:before|after}timebd:获取时间往后推,还是往前推,*@param{boole}haveCurrentDay:包不包含当天时间,*@param{number}Days:计算几天的时间,*@param{string:"2023-11-02"}timing:指定不指定当天的日期*@return{array}......
  • requests-mock:轻松模拟HTTP请求的利器
    一、简介requests-mock一个python库,用于单元测试中模拟HTTP请求的响应,它可以进行来模拟接口的各种场景。安装:pipinstallrequests-mock二、使用方法模拟post请求 importrequestsimportrequests_mockdeftest_01():withrequests_mock.Mocker()as......
  • 正则可视化在线工具-更直观地理解和调试正则表达式的利器
    在工作和学习中,正则表达式是一种强大的工具,用于处理和分析文本数据。它可以帮助我们在海量数据中快速搜索、匹配和提取所需的信息。然而,正则表达式的语法复杂,很多人在编写和调试时可能会遇到困难。为了解决这个问题,我决定自己编写一个正则工具。这个工具旨在提供一个直观且用户友......
  • 区间合并
    AcWing笔记--区间合并前言给定多个区间,如[1,8],[7,12],[15,18],[18,25]。可以看出,这些区间之间是有交集的,比如[1,8]和[7,12]以及[15,18],[18,25]。这两对区间可以合并,变为[1,12]以及[15,25]。区间合并解决的就是给定多个区间段,让我们判断哪些区间可以合并,最后......