1、实验任务1
源码Point.hpp
#pragma once #include <iostream> using std::cout; using std::endl; class Point { public: Point(int x0 = 0, int y0 = 0); ~Point() = default; int get_x() const; int get_y() const; void show() const; void move(int new_x, int new_y); private: int x, y; }; Point::Point(int x0, int y0): x{x0}, y{y0} { } int Point::get_x() const { return x; } int Point::get_y() const { return y; } void Point::show() const { cout << "(" << x << ", " << y << ")" << endl; } void Point::move(int new_x, int new_y) { x = new_x; y = new_y; }
源码task1.cpp
#include <iostream> #include "point.hpp" #include <vector> using std::vector; using std::cin; void output(const vector<Point> &v) { for(auto &t: v) t.show(); } void test() { int n; cout << "输入动态Point数组类对象中元素个数: "; cin >> n; vector<Point> x(n); cout << "x对象中所有点坐标信息: " << endl; output(x); vector<Point> y(x); cout << "\ny对象中所有点坐标信息: " << endl; output(y); cout << "\n更新x对象......" << endl; x.at(0).move(30, 50); x.push_back(Point(2, 2)); cout << "\nx对象中所有点坐标信息: " << endl; output(x); cout << "\ny对象中所有点坐标信息: " << endl; output(y); } int main() { test(); }
task1运行测试截图:
Task 1 (问答)
问题1:对x对象进行更新时,基于 vector 对象x创建的对象y是否发生变化?
答:不发生变化
问题2:标准库模板类vector在复制一个动态数组对象时,实现的是深复制还是浅复制?
答:深复制
2、实验任务2
源码Point.hpp
#pragma once #include <iostream> using std::cout; using std::endl; class Point { public: Point(int x0 = 0, int y0 = 0); ~Point() = default; int get_x() const; int get_y() const; void show() const; void move(int new_x, int new_y); private: int x, y; }; Point::Point(int x0, int y0): x{x0}, y{y0} { } int Point::get_x() const { return x; } int Point::get_y() const { return y; } void Point::show() const { cout << "(" << x << ", " << y << ")" << endl; } void Point::move(int new_x, int new_y) { x = new_x; y = new_y; }
源码vectorPoint.hpp
#pragma once #include "point.hpp" #include <cassert> #include <iostream> class vectorPoint{ public: vectorPoint(int n); ~vectorPoint(); int get_size() const; Point& at(int index); Point& at(int index) const; private: int size; Point *ptr; }; vectorPoint::vectorPoint(int n) : size{n} { ptr = new Point[n]; } vectorPoint::~vectorPoint() { delete[] ptr; } int vectorPoint::get_size() const { return size; } Point& vectorPoint::at(int index) { assert(index >= 0 && index < size); return ptr[index]; } Point& vectorPoint::at(int index) const { assert(index >= 0 && index < size); return ptr[index]; }
源码task2.cpp
#include "vectorPoint.hpp" #include <iostream> void output(const vectorPoint &v) { for(auto i = 0; i < v.get_size(); ++i) v.at(i).show(); } void test() { using namespace std; int n; cout << "输入vectorPoint对象中元素个数: "; cin >> n; vectorPoint x(n); cout << "x对象中所有点坐标信息: " << endl; output(x); vectorPoint y(x); cout << "\ny对象中所有点坐标信息: " << endl; output(y); cout << "\n更新x对象中点坐标信息......" << endl; x.at(0).move(30, 50); x.at(1).move(-1, -1); cout << "x对象中所有点坐标信息: " << endl; output(x); cout << "\ny对象中所有点坐标信息: " << endl; output(y); } int main() { test(); }
task2运行测试截图:
Task 2(问答)
问题1:观察更新对象x后,基于 vectorPoint 对象x创建的对象y是否发生变化?
答:发生变化
问题2:编译器为vectorPoint类创建的默认复制构造函数,在复制一个动态数组对象时,实现的是深复制还是浅复制?
答:浅复制
问题3:在类vectorPoint内部,手动增加的以下复制构造函数声明和定义,实现的是浅复制还是深复制?
答:浅复制
*构造函数声明:vectorPoint(const vectorPoint &vp);
*构造函数定义:vectorPoint::vectorPoint(const vectorPoint &vp): size{vp.size}, ptr{vp.ptr}
3、实验任务3
源码Point.hpp
#pragma once #include <iostream> using std::cout; using std::endl; class Point { public: Point(int x0 = 0, int y0 = 0); ~Point() = default; int get_x() const; int get_y() const; void show() const; void move(int new_x, int new_y); private: int x, y; }; Point::Point(int x0, int y0): x{x0}, y{y0} { } int Point::get_x() const { return x; } int Point::get_y() const { return y; } void Point::show() const { cout << "(" << x << ", " << y << ")" << endl; } void Point::move(int new_x, int new_y) { x = new_x; y = new_y; }
源码vectorPoint.hpp
#pragma once #include "point.hpp" #include <cassert> #include <iostream> class vectorPoint{ public: vectorPoint(int n); vectorPoint(const vectorPoint &vp); ~vectorPoint(); int get_size() const; Point& at(int index); Point& at(int index) const; private: int size; Point *ptr; }; vectorPoint::vectorPoint(int n) : size{n} { ptr = new Point[n]; } vectorPoint::vectorPoint(const vectorPoint &vp): size{vp.size}, ptr{new Point[size]} { for(auto i = 0; i < size; ++i) ptr[i] = vp.ptr[i]; } vectorPoint::~vectorPoint() { delete[] ptr; } int vectorPoint::get_size() const { return size; } Point& vectorPoint::at(int index) { assert(index >= 0 && index < size); return ptr[index]; } Point& vectorPoint::at(int index) const { assert(index >= 0 && index < size); return ptr[index]; }
源码task3.cpp
#include "vectorPoint.hpp" #include <iostream> void output(const vectorPoint &v) { for(auto i = 0; i < v.get_size(); ++i) v.at(i).show(); } void test() { using namespace std; int n; cout << "输入vectorPoint对象中元素个数: "; cin >> n; vectorPoint x(n); cout << "x对象中所有点坐标信息: " << endl; output(x); vectorPoint y(x); cout << "\ny对象中所有点坐标信息: " << endl; output(y); cout << "\n更新x对象中点坐标信息......" << endl; x.at(0).move(30, 50); x.at(1).move(-1, -1); cout << "x对象中所有点坐标信息: " << endl; output(x); cout << "\ny对象中所有点坐标信息: " << endl; output(y); } int main() { test(); }
task3运行测试截图:
Task 3(问答)
问题1:观察更新对象x后,基于 vectorPoint 对象x创建的对象y是否发生变化?
答:不发生变化
问题2:这个vectorPoint 类的实现中,复制构造函数实现的是深复制还是浅复制?
答:深复制
问题3:基于实验任务2和3,总结当类的成员中包含指针域成员时深复制与浅复制的区别。
答:在进行深复制时,我们需要将原先被复制的数据内容重新分配新的空间,这样在存储数据的旧存储空间被系统回收释放时,新指针指向的新地址存放的数据不会收到影响,这样才能够进行成员内容的深复制。需要注意的是,仅将原来的旧地址复制分配给新指针指向的新地址,新旧指针指向同一个地址,这样只能实现成员内容的浅复制,当原有的数据内容被更改后,新地址的数据会受到影响。
4、实验任务4
源码task4_1.cpp
# include<iostream> using namespace std; void swap1(int& rx, int& ry); void swap2(int* px, int* py); void print(int x, int y); void test() { int x = 3, y = 4; print(x, y); swap1(x, y); print(x, y); cout << endl; x = 3, y = 4; print(x, y); swap2(&x, &y); print(x, y); } int main() { test(); } void swap1(int& rx, int& ry) { int t; t = rx; rx = ry; ry = t; } void swap2(int* px, int* py) { int t; t = *px; *px = *py; *py = t; } void print(int x, int y) { std::cout << "x = " << x << ", y = " << y << "\n"; }
task4_1运行测试截图:
源码task4_2.cpp
# include<iostream> # include<typeinfo> using namespace std; int main() { int a; int& ra = a; ra = 4; int* pa = &a; *pa = 5; //以十六进制形式输出普通变量a,引用变量ra,指针变量pa的地址 cout << "&a = " << hex << &a << endl; cout << "&ra = " << hex << &ra << endl; cout << "&pa = " << hex << &pa << "\n\n"; //输出普通变量a,引用变量ra,指针变量pa的值 cout << "a = " << a << endl; cout << "ra = " << ra << endl; cout << "pa = " << hex << pa << endl; //输出指针变量pa指向的变量的值 cout << "*pa = " << *pa << "\n\n"; //输出普通变量a,引用变量ra,指针变量pa的类型信息 cout << "type a: " << typeid(a).name() << endl; cout << "type ra: " << typeid(ra).name() << endl; cout << "type pa: " << typeid(pa).name() << endl; }
task4_2运行测试截图:
源码task4_3.cpp
# include<iostream> # include<vector> using namespace std; template<typename T> void output(const T& x) { for (auto i : x) std::cout << i << ","; std::cout << "\b \b \n"; } template<typename T> void square1(T& x) { for (auto i : x)//i是普通类型 i *= i; } template <typename T> void square2(T& x) { for (auto& i : x)//i是引用类型 i *= i; } void test1() { vector<int> x{ 1,2,3,4,5 }; cout << "动态int型数组对象x内的元素值: "; output(x); cout << "调用函数square1()......" << endl; square1(x); cout << "动态int型数组对象x内的元素值: "; output(x); } void test2() { vector<int> x{ 1,2,3,4,5 }; cout << "动态int型数组对象x内的元素值: "; output(x); cout << "调用函数square2()......" << endl; square2(x); cout << "动态int型数组对象x内的元素值: "; output(x); } int main() { cout << "测试1: " << endl; test1(); cout << "\n测试2: " << endl; test2(); }
task4_3运行测试截图:
Task 4(问答)
问题:用文字总结引用类型、指针类型的区别。
答:引用类型:是对原有类型的复制,可以认为是原类型的“新名字”,两者数据内容均存储在同一个地址内,数据内容也完全一致。
指针类型:是通过新指针指向新的空间,将原类型的数据内容存进这个新地址当中,和原类型的存储地址不同。指针本质是存储的地址,但是通过“*”我们可以间接访问该指针指向地址中存储的数据内容。所以当一个指针定义为int *p,我们可以通过“*p”实现访问原类型int的数据内容。
5、实验任务5
源码vectorInt.hpp(动态int型数组类vectorInt定义和实现源码)
# pragma once # include<iostream> # include<cassert> using namespace std; class vectorInt { public: vectorInt(int n); vectorInt(int n ,int value); vectorInt(const vectorInt& vi); ~vectorInt(); int get_size()const; int& at(int index); int& at(int index) const; private: int size; int* ptr; }; vectorInt::vectorInt(int n) : size{ n } { ptr = new int[n]; cout << "constructor vectorInt(int n) called." << endl; } vectorInt::vectorInt(int n, int value) : size{ n } { ptr = new int[n]; for(auto i = 0; i < size; ++i) ptr[i] = value; cout << "constructor vectorInt(int n, int value) called." << endl; } vectorInt::vectorInt(const vectorInt& vi) : size{ vi.size }, ptr{ new int[size] } { for (auto i = 0; i < size; ++i) ptr[i] = vi.ptr[i]; cout << "copy constructor called." << endl; } vectorInt::~vectorInt() { delete[] ptr; cout << "destructor called." << endl; } int vectorInt::get_size() const { return size; } int & vectorInt::at(int index) { assert(index >= 0 && index < size); return ptr[index]; } int& vectorInt::at(int index) const { assert(index >= 0 && index < size); return ptr[index]; }
源码task5.cpp测试(vectorInt类的完整代码)
# include"vectorInt.hpp" # include<iostream> using std::cout; using std::cin; using std::endl; void output(const vectorInt& vi) { for (auto i = 0; i < vi.get_size(); ++i) cout << vi.at(i) << ","; cout << "\b \b \n"; } void test() { int n; cout << "输出vectorInt对象中元素个数:"; cin >> n; vectorInt x1(n); //构造动态int数组对象x1,包含n个元素,不对元素初始化 for (auto i = 0; i < n; ++i) x1.at(i) = i * i; cout << "vectorInt对象x1: "; output(x1); vectorInt x2(n, 42); //构造动态int数组对象x2,包含n个元素,每个元素初始值为42 cout << "vectorInt对象x2: "; output(x2); vectorInt x3(x2); cout << "vectorInt对象x3: "; output(x3); cout << "更新vectorInt对象x2......\n"; x2.at(0) = 77; x2.at(1) = -999; cout << "vectorInt对象x2: "; output(x2); cout << "vectorInt对象x3: "; output(x3); } int main() { test(); }
task5运行测试结果截图:
6、实验任务6
源码matrix.hpp(类Matrix的定义和实现完整代码)
#pragma once #include <iostream> #include <cassert> using std::cout; using std::endl; class Matrix { public: Matrix(int n, int m); Matrix(int n); Matrix(const Matrix& x); ~Matrix(); void set(const double* pvalue); void set(int i, int j, double value); double& at(int i, int j) const; double& at(int i, int j); int get_lines() const; int get_cols() const; void print() const; private: int lines; int cols; double* ptr; }; Matrix::Matrix(int n, int m):lines{n}, cols{m}{ ptr = new double[n * m]; } Matrix::Matrix(int n):lines{n}, cols{n}{ ptr = new double[n * n]; } Matrix::Matrix(const Matrix& x) :lines{ x.lines }, cols{ x.cols }, ptr{ new double[lines * cols] } { for (int i = 0; i < lines; ++i) { for (int j = 0; j < cols; ++j) { ptr[cols * i + j] = x.ptr[cols * i + j]; } } } Matrix::~Matrix() { delete [] ptr; }; void Matrix::set(const double* pvalue) { for (int i = 0; i < (lines * cols); ++i) ptr[i] = pvalue[i]; } void Matrix::set(int i, int j, double value) { ptr[cols * i + j] = value; } double& Matrix::at(int i, int j) const { assert(i * j >= 0 && i * j < lines * cols); return ptr[cols * i + j]; } double& Matrix::at(int i, int j) { assert(i * j >= 0 && i * j < lines * cols); return ptr[cols * i + j]; } int Matrix::get_lines() const { return lines; } int Matrix::get_cols() const { return cols; } void Matrix::print() const { for (int i = 0; i < lines; ++i){ for (int j = 0; j < cols; ++j) { cout << ptr[cols * i + j] << ","; } cout << "\b \b \n"; }
源码task6.cpp测试(测试代码)(备注:数组x换一组测试数据)
#include <iostream> #include "matrix.hpp" using namespace std; const int N1 = 3; const int N2 = 2; void output(const Matrix& m, int index) { for (auto j = 0; j < m.get_cols(); ++j) cout << m.at(index, j) << ","; cout << "\b \b \n"; } void test() { double x[N1 * N2] = { 3,5,2,7,6,8 }; Matrix m1(N1, N2); m1.set(x); cout << "矩阵对象m1: " << endl; m1.print(); cout << "矩阵对象m1第0行是: " << endl; output(m1, 0); cout << endl; Matrix m2(N2, N1); m2.set(x); cout << "矩阵对象m2: " << endl; m2.print(); cout << "矩阵对象m2第0行是: " << endl; output(m2, 0); cout << endl; Matrix m3(m2); m3.set(0, 0, 999); // 将矩阵对象m2索引(0,0)元素设为999 cout << "矩阵对象m3:" << endl; m3.print(); cout << endl; Matrix m4(2); m4.set(x); cout << "矩阵对象m4:" << endl; m4.print(); } int main() { test(); }
task6运行测试截图:
实验总结:对于深复制和浅复制、引用类型和指针类型的区分有了更深刻的学习和理解;同时在程序设立类的过程中,可以简单通过申请新空间存储内容、释放回收空间、指针的建立和深复制等,实现对数据内容的传递应用。
标签:const,数组,Point,int,void,实验,vectorPoint,ptr,指针 From: https://www.cnblogs.com/Rainbow-forest/p/17811078.html