硬件定时器
- 定时器是由时钟源和可编程计数器组成的硬件设备。
- 时钟源通常是一个晶体振荡器,会产生周期性电信号,以精确的频率驱动计数器。使用一个倒计时值对计数器进行编程,每个时钟信号减1。当计数减为0时,计数器向CPU生成一个定时器中断,将计数值重新加载到计数器中,并重复倒计时。
- 计数器周期称为定时器刻度,是系统的基本计时单元。
个人计算机定时器
- 实时时钟(RTC):RTC由一个小型备用电池供电。即使在个人计算机关机时,它也能连续运行。它用于实时提供时间和日期信息。当Linux启动时,它使用RTC更新系统时间变量,以与当前时间保持一致。在所有类Unix系统中,时间变量是一个长整数,包含 从1970年1月1日起经过的秒数。
- 可编程间隔定时器(PIT):PIT是与CPU分离的一个硬件定时器。可对它进行编程,以提供以毫秒为单位的定时器刻度。在所有I/O设备中,PIT可以最高优先 级IRQ0中断。PIT定时器中断由Linux内核的定时器中断处理程序来处理,为系统操作提 供基本的定时单元,例如进程调度、进程间隔定时器和其他许多定时事件。
- 多核CPU中的本地定时器:在多核CPU中,每个核都是一个独立的处理器,它有自己的本地定时器,由CPU时钟驱动。
- 高分辨率定时器:大多数电脑都有一个时间戳定时器(TSC),由系统时钟驱动。它的内容可通过64位TSC寄存器读取。由于不同系统主板的时钟频率可能不同,TSC不适合作为实时设备,但它提供纳秒级的定时器分辨率。
CPU操作
- 每个CPU都有一个程序计数器(PC),也称为指令指针(IP),以及一个标志或状态寄存器(SR)、一个堆栈指针(SP)和几个通用寄存器,当PC指向内存中要执行的下一条指令时,SR包含CPU的当前状态,如操作模式、中断掩码和条件码,SP指向当前堆栈栈顶。CPU操作可通过无限循环进行建模。
中断处理
- 外部设备(如定时器)的中断被馈送到中断控制器的预定义输人行),按优先级对中断输人排序,并将具有最高优先级的中断作为中断请求(IRQ)路由到 CPU。在每条指令执行结束时,如果 CPU 未处于按受中断的状态,即在CPU 的状态奇存器中屏廠了中断,它将忽略中断请求,使其处于挂起状态,并继续执行下一条指令。如果CPU 处于接受中断状态,即中断未被屏蔽,那么CPU 将会转移它正常的执行顺序来进行中断处理。对于每个中断,可以编程中断控制器以生成一个唯一编号,叫作中断向量,标识中断源。在获取中断向量号后,CPU 用它作为内存中中断问量表(AMD64 2011)中的条目索引,条目包含一个指向中断处理程序人口地址的指针来实际处理中断。当中断处理结束时,CPU 恢复指令的正常执行。
时钟服务函数
- 时钟服务可通过系统调用、库函数和用户级命令调用。
time系统调用
struct tms{
clock_t tms_utime; // user mode time
clock_t tms_stime; // system mode time
clock_t tms_cutime; // user time of children
clock_t tms_cstime; // system time of children
};
间隔定时器
段错误捕捉函数:
苏格拉底挑战