nn.Embedding
torch.nn.Embedding
随机初始化词向量矩阵:这种方式很容易理解,就是使用self.embedding = torch.nn.Embedding(vocab_size, embed_dim)命令直接随机生成个初始化的词向量矩阵,此时的向量值符合正态分布N(0,1),这里的vocab_size是指词向量矩阵能表征的词的个数,这个数值即是词向量文件中词的数量加1(加1的原因是,如果某个词在词向量文件中不存在,则获取不到索引,也就无法在词向量矩阵中获取对应的向量,这时我们默认这个词的索引为0,即将词向量的第一行作为这个词的向量表征。使用预训练的词向量文件时,这个方法同样适用),embed_dim是指表征每个词时,向量的维度(可自定义,如256)。对于随机初始化词向量矩阵的方式,词向量文件的生成方式一般是将当前所有的文本数据(包括训练数据、验证数据、测试数据)进行切词,再对所有词进行聚合统计,保留词的数量大于某个阈值(比如3)的词,并进行索引编号(编号从1开始,0作为上面提到的不在词向量文件中的其他词的索引),进而生成词向量文件。顺便提一句,词向量矩阵的初始化的方式也有很多种,比如Xavier、Kaiming初始化方法。
使用预训练的词向量文件初始化词向量矩阵:本质上,词向量矩阵的作用是实现文本的向量表征,因此,如何用更合适的向量表示文本,逐渐成为了一个热门研究方向。预训练的词向量文件便是其中的一个研究成果,如通过word2vec、glove等预训练模型生成的词向量文件,通过大量的训练数据,来生成词的向量表征。以word2vec为例,训练后生成的词向量文件是以离线配置文件的形式存在,可通过gensim工具包进行加载,具体命令是wvmodel
= gensim.models.KeyedVectors.load_word2vec_format(word2vec_file,
binary=False, encoding='utf-8',
unicode_errors='ignore'),加载后,可通过wvmodel.key_to_index获取词向量文件(要对词向量文件中的词索引进行重新编号,原索引从0开始,调整为从1开始,0作为不在词向量文件中的词的索引),通过wvmodel.get_vector("xxx")获取词向量文件中每个词对应的向量,将词向量文件中所有词对应的向量聚合在一起后(聚合的方式是,每个词的向量表征,按照词的索引,填充在词向量矩阵对应的位置),生成预训练词向量矩阵weight,再通过self.embedding
= torch.nn.Embedding.from_pretrained(weight,
freeze=False)完成词向量矩阵的初始化,参数freeze的作用,是指明训练时是否更新词向量矩阵的权重值,True为不更新,默认为True,等同于self.embedding.weight.requires_grad
= False)。
还有个细节需要介绍下,在获取到预训练的词向量文件后,由于预训练的词向量文件很大,因此在后续的训练过程中,可能会出现内存不足的错误,此时可对词向量文件及预训练词向量矩阵进行调整,具体来说,先对我们本身任务的所有文本数据进行切词统计,保留数量超过一定阈值的词,作为词向量文件(就是随机初始化词向量矩阵时,词向量文件的生成方法),再利用这个词向量文件,配合wvmodel.get_vector("xxx"),获取预训练词向量矩阵weight,最后进行后续的词向量矩阵初始化过程。这样操作之后,由于词向量文件中词的数量减少,词向量矩阵的行数减少,内存占用会随之减少很多。另外,生成词向量的预训练方法还有很多,参见【通俗易懂的词向量】。
转自:
https://www.cnblogs.com/emanlee/p/17455844.html
https://blog.csdn.net/qq_39439006/article/details/126760701
标签:文件,训练,nn,torch,矩阵,Embedding,向量 From: https://www.cnblogs.com/emanlee/p/17794553.html