首页 > 其他分享 >LLM探索:为ChatGLM2的gRPC后端增加连续对话功能

LLM探索:为ChatGLM2的gRPC后端增加连续对话功能

时间:2023-10-19 11:22:05浏览次数:44  
标签:completion ChatRequest gRPC ChatGLM2 request current LLM history

前言

之前我做 AIHub 的时候通过 gRPC 的方式接入了 ChatGLM 等开源大模型,对于大模型这块我搞了个 StarAI 框架,相当于简化版的 langchain ,可以比较方便的把各种大模型和相关配套组合在一起使用。

主要思路还是用的 OpenAI 接口的那套,降低学习成本,但之前为了快速开发,就只搞了个简单的 gRPC 接口,还差个多轮对话功能没有实现,这次就来完善一下这个功能。

简述

系统分为LLM后端和客户端两部分,LLM后端使用 gRPC 提供接口,客户端就是我用 Blazor 开发的 AIHub

所以这次涉及到这几个地方的修改

  • proto
  • 客户端 - C# 代码
  • AIHub页面 - Blazor 的 razor 代码
  • gRPC 服务端 - Python 代码

修改 proto

来改造一下 proto 文件

\syntax = "proto3";

import "google/protobuf/wrappers.proto";

option csharp_namespace = "AIHub.RPC";

package aihub;

service ChatHub {
  rpc Chat (ChatRequest) returns (ChatReply);
  rpc StreamingChat (ChatRequest) returns (stream ChatReply);
}

message ChatRequest {
  string prompt = 1;
  repeated Message history = 2;
  int32 max_length = 3;
  float top_p = 4;
  float temperature = 5;
}

message Message {
  string role = 1;
  string content = 2;
}

message ChatReply {
  string response = 1;
}

增加了 Message 类型,在 ChatRequest 聊天请求中增加了 history 字段作为对话历史。

修改 C# 的 gRPC 客户端代码

上面的 proto 写完之后编译项目,会重新生成客户端的 C# 代码,现在来修改一下我们的调用代码

可以看到 ChatRequest 多了个 RepeatedField<Message> 类型的 history 属性,这个属性是只读的,所以每次聊天的时候传入对话历史只能使用添加的方式。

为了方便使用,我封装了以下方法来创建 ChatRequest 对象

private ChatRequest GetRequest(string prompt, List<Message>? history = null) {
  var request = new ChatRequest {
    Prompt = prompt,
    MaxLength = 2048,
    TopP = 0.75f,
    Temperature = 0.95f
  };

  if (history != null) {
    request.History.AddRange(history);
  }

  return request;
}

继续改写两个聊天的方法,增加个一个 history 参数

public async Task<string> Chat(string prompt, List<Message>? history = null) {
  var resp = await _client.ChatAsync(GetRequest(prompt, history));
  return RenderText(resp.Response);
}

public async IAsyncEnumerable<string> StreamingChat(string prompt, List<Message>? history = null) {
  using var call = _client.StreamingChat(GetRequest(prompt, history));
  await foreach (var resp in call.ResponseStream.ReadAllAsync()) {
    yield return RenderText(resp.Response);
  }
}

搞定。

修改 gRPC 服务端的 Python 代码

先来看看 ChatGLM2 是如何传入对话的

对官方提供的 demo 进行调试,发现传入模型的 history 是列表里面包着一个个元组,表示一个个对话,奇奇怪怪的格式。

history = [('问题1', '回答1'), ('问题2', '回答2')]

但是 AIHub 的对话是按照 OpenAI 的思路来做的,是这样的格式:

history = [
  {'role': 'user', 'content': '问题1'},
  {'role': 'assistant', 'content': '回答1'},
  {'role': 'user', 'content': '问题2'},
  {'role': 'assistant', 'content': '回答2'},
]

现在需要把 OpenAI 对话格式转换为 ChatGLM 的格式

直接上代码吧

def messages_to_tuple_history(messages: List[chat_pb2.Message]):
    """把聊天记录列表转换成 ChatGLM 需要的 list 嵌套 tuple 形式"""
    history = []
    current_completion = ['', '']
    is_enter_completion = False

    
    for item in messages:
        if not is_enter_completion and item.role == 'user':
            is_enter_completion = True

        if is_enter_completion:
            if item.role == 'user':
                if len(current_completion[0]) > 0:
                    current_completion[0] = f"{current_completion[0]}\n\n{item.content}"
                else:
                    current_completion[0] = item.content
            if item.role == 'assistant':
                if len(current_completion[1]) > 0:
                    current_completion[1] = f"{current_completion[1]}\n\n{item.content}"
                else:
                    current_completion[1] = item.content

                is_enter_completion = False
                history.append((current_completion[0], current_completion[1]))
                current_completion = ['', '']

    return history

目前只处理了 user 和 assistant 两种角色,其实 OpenAI 还有 system 和 function ,system 比较好处理,可以做成以下形式

[('system prompt1', ''), ('system prompt2', '')]

不过我还没测试,暂时也用不上这个东西,所以就不写在代码里了。

接着继续修改两个对话的方法

class ChatService(chat_pb2_grpc.ChatHubServicer):
    def Chat(self, request: chat_pb2.ChatRequest, context):
        response, history = model.chat(
            tokenizer,
            request.prompt,
            history=messages_to_tuple_history(request.history),
            max_length=request.max_length,
            top_p=request.top_p,
            temperature=request.temperature)
        torch_gc()
        return chat_pb2.ChatReply(response=response)

    def StreamingChat(self, request: chat_pb2.ChatRequest, context):
        current_length = 0
        for response, history in model.stream_chat(
                tokenizer,
                request.prompt,
                history=messages_to_tuple_history(request.history),
                max_length=request.max_length,
                top_p=request.top_p,
                temperature=request.temperature,
                return_past_key_values=False):

            print(response[current_length:], end="", flush=True)
            yield chat_pb2.ChatReply(response=response)
            current_length = len(response)

        torch_gc()

对了,每次对话完成记得回收显存

def torch_gc():
    if torch.cuda.is_available():
        with torch.cuda.device(CUDA_DEVICE):
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()

这样就搞定了。

PS: Python 日志组件可以用 loguru ,很好用,我最近刚发现的。

小结

gRPC 方式调用开发起来还是有点麻烦的,主要是调试比较麻烦,我正在考虑是否改成统一 OpenAI 接口方式的调用,GitHub 上有人贡献了 ChatGLM 的 OpenAI 兼容接口,后续可以看看。

不过在视觉这块,还是得继续搞 gRPC ,传输效率比较好。大模型可以使用 HTTP 的 EventSource 是因为数据量比较小,次要原因是对话是单向的,即:用户向模型提问,模型不会主动向用户发送信息。

标签:completion,ChatRequest,gRPC,ChatGLM2,request,current,LLM,history
From: https://www.cnblogs.com/deali/p/17774304.html

相关文章

  • 在 kubernetes 环境中实现 gRPC 负载均衡
    前言前段时间写过一篇gRPC的入门文章,在最后还留了一个坑没有填:也就是gRPC的负载均衡问题,因为当时的业务请求量不算大,再加上公司没有对Istio这类服务网格比较熟悉的大牛,所以我们也就一直拖着没有解决,依然只是使用了kubernetes的service进行负载,好在也没有出什么问题......
  • .NET CORE 之 gRPC使用
    gRPC简单介绍gRPC是一种与语言无关的高性能远程过程调用(RPC)框架(google开源的rpc框架)。gRPC默认使用protocolbuffers,这是Google开源的一套成熟的结构数据序列化机制(也可以使用其他数据格式如JSON) gRPC的主要优点是: HTTP2传输现代高性能轻量级RPC框架。协定......
  • grpc服务报错: http2 frame too large
    报错如下:14xxBadRequesterrorreadingserverpreface:http2:frametoolarge其中4xx为客户端报错中的一个具体数字。比如:404/415,仅以报错举例,且出现报错码不固定。但是errormsg的核心内容不变:frametoolarge...这个是因为客户端在没有TLS加密的情况下发送HTT......
  • 解密Prompt系列17. LLM对齐方案再升级 WizardLM & BackTranslation & SELF-ALIGN
    话接上文的指令微调的样本优化方案,上一章是通过多样性筛选和质量过滤,对样本量进行缩减,主打经济实惠。这一章是通过扩写,改写,以及回译等半监督样本挖掘方案对种子样本进行扩充,提高种子指令样本的多样性和复杂度,这里我们分别介绍Microsoft,Meta和IBM提出的三个方案。Microsoft:WizardL......
  • GPU实验室-在阿里云云上部署ChatGLM2-6B大模型
    实验室地址:https://developer.aliyun.com/adc/scenario/f3dc63dc55a543c3884b8dbd292adcd5一、先买机器并开通对应安全组8501端口规格族:GPU计算型gn6i实例规格:ecs.gn6i-c4g1.xlarge安全组新增规则入方向端口范围:8501/8501授权对象:0.0.0.0/0二、最好是安装系统的时候把安装nvidi......
  • 七个 LLM 的狼人杀之夜;马斯克的星链残骸会“砸死人”?OpenAI 安全漏洞曝光丨RTE开发者
    开发者朋友们大家好:这里是「RTE开发者日报」,每天和大家一起看新闻、聊八卦。我们的社区编辑团队会整理分享RTE(RealTimeEngagement)领域内「有话题的新闻」、「有态度的观点」、「有意思的数据」、「有思考的文章」、「有看点的会议」,但内容仅代表编辑的个人观点,欢迎大家留......
  • 基于 P-Tuning v2 进行 ChatGLM2-6B 微调实践
    微调类型简介1.SFT监督微调:适用于在源任务中具有较高性能的模型进行微调,学习率较小。常见任务包括中文实体识别、语言模型训练、UIE模型微调。优点是可以快速适应目标任务,但缺点是可能需要较长的训练时间和大量数据。2.LoRA微调:通过高阶矩阵秩的分解减少微调参数量,不改变预训......
  • LLM采样后处理总结:LLM的后处理的cpp实现
    LLM采样后处理总结:LLM的后处理的cpp实现在经过LLM的lm_head之后,会得到[batch,vocab_size]大小的矩阵向量,此时需要对输出的逻辑张量进行采样,除了beam_search的贪心策略,还有repetition_penalty、temperature、top_k、top_p等几种控制采样的方法。repetition_penaltyrepetition_p......
  • 浏览器可直接访问 Dubbo、gRPC 后端微服务,Dubbo-js 首个alpha 版本来了!
    作者:蔡建怿基于Dubbo3定义的Triple协议,你可以轻松编写浏览器、gRPC兼容的RPC服务,并让这些服务同时运行在HTTP/1和HTTP/2上。DubboTypeScriptSDK[1]支持使用IDL或编程语言特有的方式定义服务,并提供一套轻量的APl来发布或调用这些服务。Dubbo-js已于9月份......
  • Graph RAG: 知识图谱结合 LLM 的检索增强
    本文为大家揭示NebulaGraph率先提出的GraphRAG方法,这种结合知识图谱、图数据库作为大模型结合私有知识系统的最新技术栈,是LLM+系列的第三篇,加上之前的图上下文学习、Text2Cypher这两篇文章,目前NebulaGraph+LLM相关的文章一共有3篇。GraphRAG在第一篇关于上下文......