首页 > 其他分享 >基于 P-Tuning v2 进行 ChatGLM2-6B 微调实践

基于 P-Tuning v2 进行 ChatGLM2-6B 微调实践

时间:2023-10-13 09:24:30浏览次数:42  
标签:6B Tuning 训练 -- ChatGLM2 微调 prefix train 模型

微调类型简介

1. SFT监督微调:适用于在源任务中具有较高性能的模型进行微调,学习率较小。常见任务包括中文实体识别、语言模型训练、UIE模型微调。优点是可以快速适应目标任务,但缺点是可能需要较长的训练时间和大量数据。

2. LoRA微调:通过高阶矩阵秩的分解减少微调参数量,不改变预训练模型参数,新增参数。优点是减少了微调的参数量和成本,同时能达到与全模型微调相近的效果。

3. P-tuning v2微调:引入了prefix-tuning的思想,每一层都加入了prefix,并采用了多任务学习。解决了P-tuning v1中序列标注任务效果不佳和普遍性差的问题。其参数对象是各层的prefix。优点是适用于多任务学习,但在自然语言理解任务上表现可能不佳。

4. Freeze微调:主要用于大语言模型的微调,后几层网络提取语义特征,前几层提取文本表层特征。优点是参数高效,适用于提取特定层次的特征。

综上所述,各种微调方法适用于不同的场景和任务。SFT监督微调适用于快速适应目标任务,LoRA适用于减少参数量和成本,P-tuning v2适用于多任务学习,而Freeze适用于提取特定层次的特征。

1.下载glm2训练脚本

git clone https://github.com/THUDM/ChatGLM2-6B.git

2.然后使用 pip 安装依赖

pip install -r requirements.txt -i https://pypi.douban.com/simple/

运行行微调除 ChatGLM2-6B 的依赖之外,还需要安装以下依赖

pip install rouge_chinese nltk jieba datasets transformers[torch] -i https://pypi.douban.com/simple/

3.下载样例数据或者自己构建样例

{"content": "类型#裙_材质#网纱_颜色#粉红色_图案#线条_图案#刺绣_裙腰型#高腰_裙长#连衣裙_裙袖长#短袖_裙领型#圆领", "summary": "这款连衣裙,由上到下都透出女性魅力,经典圆领型,开口度恰好,露出修长的脖颈线条,很是优雅气质,短袖设计,这款对身材有很好的修饰作用,穿起来很女神;裙身粉红色花枝重工刺绣,让人一眼难忘!而且在这种网纱面料上做繁复图案的绣花,是很考验工艺的,对机器的要求会更高,更加凸显我们的高品质做工;"}

可以根据以上格式,构建自己的训练样本,我们可以用一些行业生产数据,如会话记录对模型进行训练,

官方示例数据下载:

https%3A//cloud.tsinghua.edu.cn/f/b3f119a008264b1cabd1/%3Fdl%3D1

4.根据自己的环境修改训练脚本中对应的文件地址

PRE_SEQ_LEN=128  #序列的预设长度为128
LR=2e-2   #学习率为0.02
NUM_GPUS=4  #用几颗GPU进行训练

torchrun --standalone --nnodes=1 --nproc_per_node=$NUM_GPUS main.py \
    --do_train \
    --train_file /export/data/train.json \            #设置训练数据文件的目录
    --validation_file /export/data/validation.json \  #设置验证文件的目录
    --preprocessing_num_workers 10 \
    --prompt_column content \
    --response_column summary \
    --overwrite_cache \
    --model_name_or_path /opt/tritonserver/python_backend/models/chatglm2-6b \  #模型目录
    --output_dir /export/models/trained-chatglm2-6b-pt-$PRE_SEQ_LEN-$LR \  #训练后的模型目录
    --overwrite_output_dir \
    --max_source_length 64 \
    --max_target_length 128 \
    --per_device_train_batch_size 1 \
    --per_device_eval_batch_size 1 \
    --gradient_accumulation_steps 16 \
    --predict_with_generate \
    --max_steps 3000 \
    --logging_steps 10 \
    --save_steps 1000 \
    --learning_rate $LR \
    --pre_seq_len $PRE_SEQ_LEN \
    --quantization_bit 4

5.开始训练吧

sh train.sh

训练中

快要训练完成

6.训练完成

Training completed. Do not forget to share your model on huggingface.co/models =)

{'train_runtime': 4598.3849, 'train_samples_per_second': 41.754, 'train_steps_per_second': 0.652, 'train_loss': 0.1287700497706731, 'epoch': 2400.0}

100%|██████████| 3000/3000 [1:16:37<00:00, 1.53s/it]

***** train metrics *****

epoch = 2400.0

train_loss = 0.1288

train_runtime = 1:16:38.38

train_samples = 24

train_samples_per_second = 41.754

train_steps_per_second = 0.652

7.部署训练后的模型

在 P-tuning v2 训练时模型只保存 PrefixEncoder 部分的参数,所以在推理时需要同时加载原 ChatGLM-6B 模型以及 PrefixEncoder 的权重

        model_path = "/opt/tritonserver/python_backend/models/chatglm2-6b"
        model = AutoModel.from_pretrained(model_path, config=config, trust_remote_code=True)
        prefix_state_dict = torch.load(os.path.join('/opt/train/trained-chatglm2-6b-pt-128-1e-4/checkpoint-3000', "pytorch_model.bin"))
        new_prefix_state_dict = {}
        for k, v in prefix_state_dict.items():
            if k.startswith("transformer.prefix_encoder."):
                new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
        model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)

8.过程中遇到的问题

8.1 微调后无法应答

PRE_SEQ_LEN=128
LR=2e-2
NUM_GPUS=1

torchrun --standalone --nnodes=1 --nproc_per_node=$NUM_GPUS main.py \
    --do_train \
    --train_file train.json \
    --validation_file dev.json \
    --preprocessing_num_workers 10 \
    --prompt_column content \
    --response_column summary \
    --overwrite_cache \
    --model_name_or_path /opt/tritonserver/python_backend/models/chatglm2-6b \
    --output_dir trained-chatglm2-6b-pt-$PRE_SEQ_LEN-$LR \
    --overwrite_output_dir \
    --max_source_length 64 \
    --max_target_length 64 \
    --per_device_train_batch_size 16 \
    --per_device_eval_batch_size 1 \
    --gradient_accumulation_steps 1 \
    --predict_with_generate \
    --max_steps 3000 \
    --logging_steps 10 \
    --save_steps 1000 \
    --learning_rate $LR \
    --pre_seq_len $PRE_SEQ_LEN \

使用官方脚本中的学习率设置 LR=2e-2 (0.02)

模型出现无法应答,灾难性遗忘,基本上原有的知识都遗忘了,无法应答普通提问 , 比如"你好.."

于是尝试使用 LR=1e-4 (0.0001) 进行训练

"1e-4" 表示 1 乘以 10 的 -4 次方,即等于 0.0001,"2e-2" 表示 2 乘以 10 的 -2 次方,即等于 0.02。

模型最终可以应答.

镜像问题:

https://github.com/THUDM/ChatGLM-6B/issues/1148

8.2 关于学习率:

我理解是,学习率大小像看书看的粗细,看的太粗就学的快(收敛快)但啥也学不到,

学习率是影响模型训练效果的重要参数。过大的学习率可能导致模型不稳定,过小的学习率则可能导致训练速度变慢。因此,需要反复试验,找到合适的学习率。

学习率(lr)表示每次更新权重参数的尺度(步长),ΔΘ=Θ0−(lr)(loss′)。

学习率与batch_size在权重更新中的关系

学习率(lr)直观可以看出lr越大,权重更新的跨度越大,模型参数调整变化越快。

batch_size对模型的影响,在于模型每次更新时,计算梯度是计算整个Batch的平均梯度,

即权重更新公式中的loss′=1batchsize(lossbatch)′, 整合就是 ΔΘ=Θ0−(lr)1batchsize(lossbatch)′ 。即lr与batch_size共同影响模型更新。

作者:京东科技 杨建

来源:京东云开发者社区 转发请注明来源

标签:6B,Tuning,训练,--,ChatGLM2,微调,prefix,train,模型
From: https://www.cnblogs.com/Jcloud/p/17759186.html

相关文章

  • CF1766B [Notepad#]
    Problem题目简述给你一个整数\(n\)和字符串\(s\),问:能不能在小于\(n\)次操作的情况下,输出字符串\(s\)。有两次操作可供使用:在已打出内容的最后添加一个字符。复制已打出内容的一个连续的子串并加到内容的末尾。思路用到的容器:\(\text{map}\)。用\(\text{map}\)来......
  • Langchain-Chatchat项目:1.1-ChatGLM2项目整体介绍
      ChatGLM2-6B是开源中英双语对话模型ChatGLM-6B的第2代版本,引入新的特性包括更长的上下文(基于FlashAttention技术,将基座模型的上下文长度由ChatGLM-6B的2K扩展到了32K,并在对话阶段使用8K的上下文长度训练);更高效的推理(基于Multi-QueryAttention技术,ChatGLM2-6B有更高效的推理......
  • CF1856B Good Arrays
    题意简述:给定一个序列\(a\),我们定义一个序列\(b\)是好的当且仅当对于\(1\dotsn\)内的每一个\(i\),\(a_i\neqb_i\)且\(\sum_{i=1}^na_i=\sum_{i=1}^nb_i\)(\(a_i\),\(b_i\)均为正整数)。现在有\(T\)组数据,每组数据给定\(n\)和序列\(a\),判断是否存在一个合法的序......
  • CF666B World Tour
    WorldTourの传送门\(4\len\le3000\)说明可以用\(n^2\)的做法,题目要求\(4\)个点的最短路最长,共\(3\)条路经,则枚举\(2\)个点。如果枚举\(a,c\),则要找\(b,d\),但\(b\)和\(c\)也要判断路径,比较麻烦,所以直接枚举\(b,c\)。然后枚举\(b,c\)对应的最短路......
  • ChatGLM2
    下载chatglm2-6bprint('开始加载分词器tokenizer...')tokenizer=AutoTokenizer.from_pretrained("THUDM/chatglm2-6b",trust_remote_code=True)print('开始加载语言模型model...')model=AutoModel.from_pretrained("THUDM/chatglm......
  • ChatGLM-6B-PT微调
    目录开发环境ChatGLM2-6B源码下载模型安装依赖下载ADGEN数据集微调前修改训练步数微调后开发环境矩池云https://www.matpool.com/host-market/gpuChatGLM2-6B源码https://github.com/THUDM/ChatGLM2-6Bgitclonehttps://github.com/THUDM/ChatGLM2-6B.git下载模型......
  • 双通道3G/14bit采集+双通道12.6G/16bit回放卡
    UDFMC-704 双通道接收+双通道发射FMC模块满足VITA57.1单宽、导冷规范。模块ADC支持进口AD9689-2000、AD9689-2600、AD6688、AD9208或国产GMS018采集芯片,DAC支持AD9171/AD9172/AD9173/AD9174/AD9175/AD9176回放芯片,输入支持直流或交流耦合方式,输出支持选配放大器。FMC子卡还支持......
  • 双通道3G/14bit采集+双通道12.6G/16bit回放卡
     UDFMC-704 双通道接收+双通道发射FMC模块满足VITA57.1单宽、导冷规范。模块ADC支持进口AD9689-2000、AD9689-2600、AD6688、AD9208或国产GMS018采集芯片,DAC支持AD9171/AD9172/AD9173/AD9174/AD9175/AD9176回放芯片,输入支持直流或交流耦合方式,输出支持选配放大器。FMC子卡还......
  • 16G内存+CPU本地部署ChatGLM2/Baichuan2推理(Windows/Mac/Linux)
    概述本文使用chatglm.cpp对中文大语言模型(LLM)进行量化与推理,支持ChatGLM2-6B、Baichuan2-13B-Chat等模型在CPU环境16G内存的个人电脑上部署,实现类似ChatGPT的聊天功能。支持的操作系统包括Windows、MacOS、Linux等。其中,量化过程需要临时使用一台内存较大的服务器。4bit量化后......
  • 基于INA226 -16bitADC的 I2C实验
    模块框图,(按键只用到了一个),注意三态门不在配置模块和I2C接口中,这样好处配置模块和I2C接口内不存在双向信号,也不存在高阻“z”的赋值,三态门放在顶层文件中 I2C读写时序,注意数据位宽是8bit,而INA266数据位宽是16,需要改下,大同小异 设计三个计数器:1、计数器cnt0用于产生scl......