当涉及大量数据时,Pandas 可以有效地处理数据。但是它使用CPU 进行计算操作。该过程可以通过并行处理加快,但处理大量数据仍然效率不高。
在以前过去,GPU 主要用于渲染视频和玩游戏。但是现在随着技术的进步大多数大型项目都依赖 GPU 支持,因为它具有提升深度学习算法的潜力。
Nvidia的开源库Rapids,可以让我们完全在 GPU 上执行数据科学计算。在本文中我们将 Rapids优化的 GPU 之上的DF、与普通Pandas 的性能进行比较。
我们将在 Google Colab 中对其进行测试。因为我们只需要很少的磁盘空间但是需要大内存 GPU (15GB),而Colab 正好可以提供我们的需求。我们将从在安装开始,请根据步骤完成整个过程。
完整文章:
https://avoid.overfit.cn/post/7ee1826e416a40b7965bca9ab4ee28f1
标签:Rapids,Colab,GPU,gpu,Pandas,sklearn From: https://www.cnblogs.com/deephub/p/16757521.html