首页 > 其他分享 >洛必达法则训练题

洛必达法则训练题

时间:2022-10-06 12:23:00浏览次数:40  
标签:洛必达 3x frac 训练 sinx lim 法则 cosx

若条件符合,洛必达法则可连续复用,直至求出极限为止

first exercise


\[\lim_{x \to 0} \frac{x-sinx}{x^{3}}=? \]

\[\\ \\ \]

\[\lim_{x \to 0} \frac{x-sinx}{x^{3}}=\lim_{x \to 0} \frac{(x)'-(sinx)'}{(x^{3})'}=\lim_{x \to 0} \frac{1-cosx}{3x^{2}} \]

\[\\ \\ \]

\[\lim_{x \to 0} \frac{1-cosx}{3x^{2}}=\lim_{x \to 0} \frac{(1)'-(cosx)'}{(3x^{2})'}=\lim_{x \to 0} \frac{0-(-sinx)}{6\cdot (x^{2})'} \]

\[\\ \\ \]

\[=\lim_{x \to 0} \frac{sinx}{6x} =\frac{1}{6} \cdot \lim_{x \to 0}\frac{sinx}{x} =\frac{1}{6} \]

\[\\ \\ \]

\[\therefore \lim_{x \to 0} \frac{x-sinx}{x^{3}}=\frac{1}{6} \]



标签:洛必达,3x,frac,训练,sinx,lim,法则,cosx
From: https://www.cnblogs.com/Preparing/p/16757383.html

相关文章