首页 > 其他分享 >观光奶牛 详细题解

观光奶牛 详细题解

时间:2023-10-14 22:34:04浏览次数:42  
标签:le int 题解 sum 观光 mid 权值 奶牛 最大值

#T3 #SPFA判断正/负环 #二分查找
为啥现在突然发出来:翻自个笔记发现这篇写的挺好hhh

361. 观光奶牛 - AcWing题库

给定一张 \(L\) 个点、\(P\) 条边的有向图,每个点都有一个权值 \(f[i]\),每条边都有一个权值 \(t[i]\)。

求图中的一个环,使“环上各点的权值之和”除以“环上各边的权值之和”最大。

输出这个最大值。

注意:数据保证至少存在一个环。

输入格式

第一行包含两个整数 \(L\) 和 \(P\)。

接下来 \(L\) 行每行一个整数,表示 \(f[i]\)。

再接下来 \(P\) 行,每行三个整数 \(a,b,t[i]\),表示点 \(a\) 和 \(b\) 之间存在一条边,边的权值为 \(t[i]\)。

输出格式

输出一个数表示结果,保留两位小数。

数据范围

\(2 \le L \le 1000\),
\(2 \le P \le 5000\),
\(1 \le f[i],t[i] \le 1000\)

输入样例:

5 7
30
10
10
5
10
1 2 3
2 3 2
3 4 5
3 5 2
4 5 5
5 1 3
5 2 2

输出样例:

6.00

思路

求有向图的一个环, 使“环上各点的权值之和”除以“环上各边的权值之和”最大。输出最大值。即 \(\frac{\sum f[i]}{\sum t[i]}\)最大。

这种类似的问题就是01分数规划问题, 有模板解法。其结果是存在上下界的, 最小因为权值都是正整数, 故为\(0\)(开区间), 最大值则是分母为\(L\), 分子最大\(1000*L\) , 故最大值为\(1000\)。

而其两段性是很显然的, 设任取中间一个值\(mid\) , 判断能否找到一个环的\(\frac{\sum f[i]}{\sum t[i]}\)值大于\(mid\), 如果不能, 说明图中最大值小于\(mid\), 继续在 \((0,mid]\) 中搜索。若搜得到, 就说明图中最大值存在与\((mid, 1000L]\) 之间, 继续缩小范围。最终会找到满足条件的最大值。

判断是否存在一个环满足\(\frac{\sum f[i]}{\sum t[i]}>mid\) 先做一个数学上的变换:
\(\sum f[i] - \sum t[i]*mid > 0\)
把求和符号提出可得等价式子:\(\sum \{f[i] - t[i]*mid\}>0\)
当我们把这求和里面那块看做从其他点到\(i\)点的边, 那么这个式子的含义就是, 存在一个环, 它的边权和大于0。既然小于0的叫做负环, 那大于0就叫做正环。

求正环的操作跟负环类似, 只需要把求最小值换成求最大值即可。

求正负环还有个优化操作, 当寻找到一定次数之后可以提前结束以避免超时, 即定义一个变量\(count\) 记录当前搜索次数, 超过一般 \(2n/3n\)时就提前返回。

也可以把队列改成栈, 这样搜索模式为深度优先, 会更多的去更新刚入栈的点, 让\(cnt\)数组累加的更快。

代码

#include <iostream>
#include <cstring>
#include <algorithm>
#include <string>
#include <cmath>
using namespace std;
const int N = 1e3 + 10, M = 1e5 + 10;
int n,m;
int h[N], e[M], w[M], ne[M], idx;
int f[N];
int q[N], cnt[N];
double dist[N];
bool st[N];

void add(int a, int b, int c) {e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++;}

bool check(double mid)
{
    memset(st, 0, sizeof st);
    memset(cnt, 0, sizeof cnt);
    int hh = 0, tt = 0;
    for(int i = 1; i <= n; i++)
        q[tt++] = i, st[i] = true;
    
    while(hh != tt)
    {
        int t = q[--tt];
        
        st[t] = false;
        for(int i = h[t]; ~i; i = ne[i])
        {
            int j = e[i];
            if(dist[j] < dist[t] - w[i]*mid + f[j])
            {
                dist[j] = dist[t] - w[i]*mid + f[j];
                cnt[j] = cnt[t] + 1;
                if(cnt[j] >= n) return true;
                if(!st[j])
                    q[tt++] = j, st[j] = true;
            }
        }
    }
    return false;
}

int main()
{
    memset(h, -1, sizeof h);
    cin >> n >> m;
    for(int i = 1; i <= n; i++) cin >> f[i];
    while(m--)
    {
        int a, b , c;
        cin >> a >> b >> c;
        add(a,b,c);
    }
    
    double l = 1, r = 1000;
    while(r - l > 1e-4)
    {
        double mid = (l + r) / 2.0;
        if(check(mid)) l = mid;
        else r = mid;
    }
    printf("%.2lf", l);
    return 0;
}

标签:le,int,题解,sum,观光,mid,权值,奶牛,最大值
From: https://www.cnblogs.com/edwinaze/p/17764869.html

相关文章

  • [题解]AT_abc153_f [ABC153F] Silver Fox vs Monster
    模拟赛最后\(15\)分钟想到的做法。思路首先有一个显然的贪心策略:我们放炸弹的地方要尽可能的使这个炸弹能影响到更多的怪上。那么我们可以将对于一个怪\(i\)能够影响到它的区间表示出来\([\max(1,l_i-d),a_i+r]\)。然后将这些区间排个序,可以粗略画出这样的图:根据上......
  • P1084疫情控制 题解
    P1084疫情控制前言:这题思路不难,实现稍微有点难。总体来说,不算特别难的那种紫题,建议评蓝。题目描述给定一些点,用这些点来切断根节点到所有叶子节点的路径,可以移动这些点,不同的点可以同时移动,求时间最少。思考过程不同的点可以同时移动:看到这里,我们可以转化一下题目:给定......
  • [AGC033C] Removing Coins题解
    思路可以看出,每次对一个点\(u\)操作一次,就相当于删除以\(u\)为根的所有叶节点。当然我们还是没有什么思路,我们可以想简单一点:在一条链上的情况。如果\(u\)是链的端点:以\(u\)为根节点的叶节点只有一个,所以链的长度减一。如果\(u\)不是链的端点:以\(u\)为根节点......
  • P1612 [yLOI2018] 树上的链 题解
    思路看到条件\(2\),我们得知:这个节点对应的最长链,一定在这个节点到根节点的简单路径上。所以我们记录\(1\)到\(i\)之间的权值和,记为\(sum_i\)。因为权值是正整数,所以满足单调性,可以二分。如何二分路径上的点呢?我们维护一个与当前dfs同步的栈,记录从根节点到当前节点的简......
  • [ARC116C] Multiple Sequences题解
    思路我们可以很好的想到一种\(O(nm)\)的dp:状态:\(dp_{i,j}\)为搜到第\(i\)个,最后一个数是\(j\)的方案数。转移:\(dp_{i,j}=\displaystyle\sum_{k|j,k\not=j}dp_{i-1,k}\)当然这是会超时的。我们换一种思路,我们先枚举最后一个数,再计算方案数。这有个好处,我们缩小......
  • 苏格拉底问答、实践过程截图、遇到问题解决问题截图,代码链接
    defineVOLUME_NAME"EXT2FS"//卷名#defineBLOCK_SIZE512//块大小#defineDISK_SIZE4612//磁盘总块数defineDISK_START0//磁盘开始地址#defineSB_SIZE32//超级块大小是32BdefineGD_SIZE32//块组描述符大小是32B#defineGDT_START(0+512)//块组描述......
  • Android项目在 app 中通过 WebView 访问 url显示空白,使用浏览器可以打开,Android WebVi
    这是服务器证书校验WebView的安全问题服务器证书校验主要针对WebView的安全问题。在app中需要通过WebView访问url,因为服务器采用的自签名证书,而不是ca认证,使用WebView加载url的时候会显示为空白,出现无法加载网页的情况。使用ca认证的证书,在WebView则可以直接......
  • 网络规划设计师真题解析--PERT “计划评审技术”(三点估算法)
    某网络建设项目的安装阶段分为A、B、C、D四个活动任务,各任务顺次进行,无时间上重叠,各任务完成时间估计如下图所示,按照计划评审技术,安装阶段工期估算为(70)天。(2019年)(70)A.31   B.51    C.53    D.83答案:C解析:依据三点估算公示,活动历时均值=(最悲观时间+最可能时间*4+......
  • 算法题解——多数元素
    题目给定一个大小为n的数组nums,返回其中的多数元素。多数元素是指在数组中出现次数大于⌊n/2⌋的元素。你可以假设数组是非空的,并且给定的数组总是存在多数元素。示例1:输入:nums=[3,2,3]输出:3示例2:输入:nums=[2,2,1,1,1,2,2]输出:2提示:n==nums.length......
  • [AGC009B] Tournament 题解
    思路考虑树形\(\text{dp}\)。我们将每个人与把自己淘汰的人连边。得到一颗以一为根的树。由于我们需要求出必须赢的场数最多的那位选手,至少要赢多少场。考虑最多的限制。可以使用树型动态规划。每一次两个人比赛的代价为:\[dp_i=\max(dp_i,dp_j)+1\]这样就达成了最多的限......