缺点 必须手动点击下关闭才能刷新最新的图,起码不会阻塞训练过程
### 画图 训练损失 训练精度 测试精度 import matplotlib.pyplot as plt import threading import time import matplotlib.animation as animation class Animator: def __init__(self): self.fmts=('-', 'm--', 'g-.', 'r:') #颜色 和线性 #1 基础绘图 #第1步:定义x和y坐标轴上的点 x坐标轴上点的数值 self.x=[] #y坐标轴上点的数值 self.train_loss=[] self.train_acc =[] self.test_acc=[] def add(self, x_,train_loss_,train_acc_,test_acc_ ): self.x.append(x_) self.train_loss.append(train_loss_) self.train_acc.append(train_acc_) self.test_acc.append(test_acc_) def ShowALL(self): fig, ax = plt.subplots() plot1=ax.plot(self.x, self.train_loss, self.fmts[0],label="train_loss") plot2=ax.plot(self.x, self.train_acc, self.fmts[1],label="train_acc") plot3=ax.plot(self.x, self.test_acc, self.fmts[2],label="test_acc") plt.legend(bbox_to_anchor=(1, 1),bbox_transform=plt.gcf().transFigure)# 添加图例 plt.grid()#网格 plt.show() import threading import time class MyThread(threading.Thread): def __init__(self,name_): threading.Thread.__init__(self) self.name_ = name_ print("线程名字",self.name_ ) self.is_running = 1# 控制标志位 self.animator=Animator() # 画图类 def run(self): while self.is_running: print("Thread is running...") print(self.animator.x,self.animator.train_loss) self.animator.ShowALL() print("线程停止") def stop(self): self.is_running = False # 创建并启动线程 # 调用 my_thread = MyThread("可视化训练过程") my_thread.setDaemon(True)#伴随主进程自动关闭 my_thread.start() i=0 while 1: i=i+1 my_thread.animator.add(i,i-3,i-2,i-1) # 加入新数据 time.sleep(1) my_thread.stop()# 通过标志为 手动关闭
标签:acc,loss,plt,self,pytorch,train,可视化,折线图,import From: https://www.cnblogs.com/gooutlook/p/17729064.html