首页 > 其他分享 >Flink的部署模式:Local模式、Standalone模式、Flink On Yarn模式

Flink的部署模式:Local模式、Standalone模式、Flink On Yarn模式

时间:2023-09-22 17:33:08浏览次数:49  
标签:Flink 06 Standalone flink yarn 模式 2023 apache org

Flink部署、执行模式

Flink的部署模式

Local本地模式、Standalone模式和FlinkonYARN模式是Flink的三种常见部署模式。

1.Local本地模式:

在本地模式下,Flink以单机模式运行,无需启动分布式资源管理器。这种模式适用于本地开发和测试,用于验证Flink代码的正确性和性能。

2.Standalone模式:

在Standalone模式下,Flink作为一个独立的集群运行。需要启动Flink的JobManager和TaskManager,JobManager负责接收和调度任务,而TaskManager负责执行任务。

3.Flink on YARN模式:

在FlinkonYARN模式下,Flink在YARN(Hadoop的资源调度和集群管理系统)之上运行。Flink作为一个YARN应用程序,利用YARN来管理资源分配和任务调度。使用这种模式,可以充分利用Hadoop集群的资源,实现Flink的分布式计算。

Flink的执行模式

Flink可以通过以下三种方式之一执行应用程序:

1.Session Mode:会话模式

会话模式需要先启动一个集群,保持一个会话,在这个会话中通过客户端提交作业。集群启动时所有资源就都已经确定,所有提交的作业会竞争集群中的资源。适合任务规模小,执行时间短的大量作业。

Flink的作业执行环境会一直保留在集群上,直到会话被显式终止。这样,可以提交多个作业,它们可以共享相同的集群资源和状态,从而实现更高的效率和资源利用。

2.Per-Job Mode:单作业模式

每个Flink应用程序作为一个独立的作业被提交和执行。

每次提交的Flink应用程序都会创建一个独立的作业执行环境,该作业执行环境仅用于执行该特定的作业。

当作业完成后,作业执行环境会被释放,集群关闭,资源释放

3.Application Mode:应用模式

应用模式算是前2种模式的升级,前2种模式中,Flink程序代码是在客户端执行,然后客户端提交给JobManager,客户端需要占用大量网络带宽。

应用模式需要为每一个提交的应用单独启动一个JobManager(应用程序在JobManager执行),也就是创建一个集群。这个JobManager只为执行这一个应用而存在,执行结束之后JobManager关闭。

4.三种模式的区别:

集群生命周期和资源隔离保证

应用程序的main()方法是在客户端还是在集群上执行

在这里插入图片描述

Local本地模式

Local模式是Flink提供的最简单部署模式,可以在单台服务器上运行,适用于日常的开发和调试。

注意:Flink的运行依赖JAVA环境,需要预先安装好JDK

下载安装

Flink下载地址: https://archive.apache.org/dist/flink/

下载Flink

wget https://repo.huaweicloud.com/apache/flink/flink-1.17.0/flink-1.17.0-bin-scala_2.12.tgz

解压、重命名

tar  -zxvf flink-1.17.0-bin-scala_2.12.tgz 

mv flink-1.17.0 flink

启动、停止Flink

不需要进行任何配置,直接使用Flink默认配置,直接运行脚本启动

bin/start-cluster.sh

停止Flink

bin/stop-cluster.sh

直接访问:http://IP:8081,可以看到Flink的后台管理界面

每个taskmanager有3个solt

在这里插入图片描述

提交测试任务

提交一个测试任务:

./bin/flink run examples/batch/WordCount.jar

在控制台直接看到输出

[root@node01 flink]# ./bin/flink run examples/batch/WordCount.jar
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/local/program/flink/lib/log4j-slf4j-impl-2.17.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/local/program/hadoop/share/hadoop/common/lib/slf4j-log4j12-1.7.25.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
Executing WordCount example with default input data set.
Use --input to specify file input.
Printing result to stdout. Use --output to specify output path.
Job has been submitted with JobID a946d0abf84ac6848a823cec43f7056f
Program execution finished
Job with JobID a946d0abf84ac6848a823cec43f7056f has finished.
Job Runtime: 584 ms
Accumulator Results: 
- 1a50b4c9582d4d35a854872c62391768 (java.util.ArrayList) [170 elements]


(a,5)
(action,1)
(after,1)
(against,1)
(all,2)
(and,12)
(arms,1)
(arrows,1)
(awry,1)

同样,在Flink的后台管理界面 Completed Jobs 一栏可以看到刚才提交执行的程序: 在这里插入图片描述

停止作业

可以直接在 WEB 界面上点击对应作业的 Cancel Job 按钮进行取消,也可以使用命令行进行取消。

使用命令行进行取消时,需要先获取到作业的JobId

bin/flink list

获取到JobId后,使用flink cancel JobId命令取消作业

bin/flink cancel a946d0abf84ac6848a823cec43f7056f

Standalone独立模式

Standalone模式是集群模式的一种,独立模式是独立运行的,不依赖任何外部的资源管理平台,存在资源不足,出现故障不会自动扩展或重分配资源的能力,一般用在开发测试或作业非常少的场景下。

优缺点:

部署相对简单,可以支持小规模,少量的任务运行

缺少系统层面对集群中Job的管理,容易遭成资源分配不均匀

资源隔离相对简单,任务之间资源竞争严重

会话模式

会话模式部署需要先启动集群,集群资源固定,通过Web页面客户端提交任务,可以多个任务。

搭建一个Flink集群,参考:搭建Flink集群、集群HA高可用以及配置历史服务器

1.启动 Flink 集群:

通过bin/start-cluster.sh脚本启动集群

2.打开Flink Web UI

在浏览器中输入http://node01:8081/地址打开Flink Web UI

3.提交Flink作业

在Flink Web UI中选择要提交的 Flink 作业 jar 包,并指定作业参数和作业名称。

bin/flink run ../examples/streaming/WordCount.jar

4.查看Flink作业

提交作业之后,在 Flink Web UI 上会看到作业的运行状态,可以查看作业日志和监控指标等信息。

5.停止Flink作业

可以在Flink Web UI中停止作业,也可以使用bin/flink cancel jobID命令停止指定的作业

单作业模式

Standalone集群并不支持单作业模式部署,单作业模式需要借助一些资源管理平台。

应用模式

应用模式下不会提前创建集群,因此不能调用start-cluster.sh脚本,但是可以使用在bin目录下的standalone-job.sh来创建一个JobManager。

1.将Flink应用程序的jar包放到Flink的安装路径下的lib目录下。

[root@node01 flink]# mv /root/demo-1.0-SNAPSHOT.jar  lib

2.启动netcat

[root@node01 ~]# nc -lk 8888

3.启动JobManager

直接指定作业入口类,脚本会到lib目录扫描所有的jar包

[root@node01 flink]# bin/standalone-job.sh start --job-classname cn.ybzy.demo.WordCountDemo  
Starting standalonejob daemon on host node01.

4.启动TaskManager

[root@node01 flink]# bin/taskmanager.sh start
Starting taskexecutor daemon on host node01.

5.查看进程

[root@node01 flink]# jps
11973 Jps
11240 TaskManagerRunner
11898 StandaloneApplicationClusterEntryPoint

6.查看Web UI 在这里插入图片描述 一直是如下所示状态,明显异常: 在这里插入图片描述 查看flink/log/flink-root-standalonejob-1-node01.log日志

1.异常提示资源不够:

Caused by: java.util.concurrent.CompletionException: org.apache.flink.runtime.jobmanager.scheduler.NoResourceAvailableException: Could not acquire the minimum required resources.
        at java.util.concurrent.CompletableFuture.encodeThrowable(CompletableFuture.java:292) ~[?:1.8.0_371]
        at java.util.concurrent.CompletableFuture.completeThrowable(CompletableFuture.java:308) ~[?:1.8.0_371]
        at java.util.concurrent.CompletableFuture.uniApply(CompletableFuture.java:607) ~[?:1.8.0_371]
        at java.util.concurrent.CompletableFuture$UniApply.tryFire(CompletableFuture.java:591) ~[?:1.8.0_371]
        at java.util.concurrent.CompletableFuture.postComplete(CompletableFuture.java:488) ~[?:1.8.0_371]
        at java.util.concurrent.CompletableFuture.completeExceptionally(CompletableFuture.java:1990) ~[?:1.8.0_371]

修改配置文件,调大资源,发现无效。

# jobmanager.memory.process.size: 1600m
jobmanager.memory.process.size: 2000m

#taskmanager.memory.process.size: 1728m
taskmanager.memory.process.size: 2600m

后来仔细观察日志,发现一处核心异常如下异常:

 org.apache.flink.runtime.resourcemanager.slotmanager.DeclarativeSlotManager [] - Received resource requirements from job 6f4f54c45d7bb59531f537b966776793: [ResourceRequirement{resourceProfile=ResourceProfile{UNKNOWN}, numberOfRequiredSlots=3}]

关键词numberOfRequiredSlots=3尤为重要,JobManager启动默认只有1Slot,Slot请求资源不够!

编辑conf/flink-conf.yaml文件

# taskmanager.numberOfTaskSlots: 1
# 修改Slot数量为3
taskmanager.numberOfTaskSlots: 3

停止taskmanager、standalone-job,重新启动,Web UI显示明显正常 在这里插入图片描述 在这里插入图片描述 发送测试数据

[root@node01 ~]# nc -lk 8888
abc bcd cdf

在这里插入图片描述

7.停止集群

[root@node01 flink]# bin/taskmanager.sh stop
Stopping taskexecutor daemon (pid: 14117) on host node01.
[root@node01 flink]# bin/standalone-job.sh stop
No standalonejob daemon (pid: 14813) is running anymore on node01.

8.总结:

在Flink中,Slot是Flink作业管理的资源基本单位,一个任务不一定会占用1个Slot。

当向Flink提交一个任务时,Flink会为该任务分配所需的Slot数量。通常取决于以下几个因素:

任务的并行度(Parallelism):如果任务的并行度很高,即需要同时执行多个子任务,则可能需要使用多个Slot。

TaskManager的资源:如果TaskManager的资源非常丰富,例如拥有多个CPU或GPU核心,则可以分配更多的Slot来运行任务。反之,则可能只能分配较少的Slot。

任务的资源需求:如果任务需要大量的内存或计算资源,则可能需要分配更多的Slot来满足需求。

个人在编写Flink程序时,设置了并行度,打包上传运行,由于JobManager的默认numberOfTaskSlots配置为1,Solt数量不够,故出现上述异常。

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
 env.setParallelism(3);

YARN运行模式

客户端把Flink应用提交给Yarn的ResourceManager,Yarn的ResourceManager会向Yarn的NodeManager申请容器。在这些容器上,Flink会部署JobManager和TaskManager的实例,从而启动集群。Flink会根据运行在JobManger上的作业所需要的Slot数量动态分配TaskManager资源。

1.安装Hadoop

安装Hadoop参考:搭建Hadoop3.X完全分布式集群环境

2.配置环境变量

# Hadoop
export HADOOP_HOME=/usr/local/program/hadoop
export PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH

# Flink
export HADOOP_CONF_DIR=${HADOOP_HOME}/etc/hadoop
export HADOOP_CLASSPATH=`hadoop classpath`

3.启动Hadoop集群,包括HDFS和YARN

[root@node01 hadoop]# sbin/start-all.sh 

4.启动netcat

nc -lk 8888

会话模式

YARN的会话模式需要首先申请一个YARN会话(YARN Session)来启动Flink集群。

启动Hadoop集群

启动Hadoop集群,包括HDFS和YARN

[root@node01 hadoop]# sbin/start-all.sh 

申请一个YARN会话

查看yarn-session.sh命令帮助

[root@node01 flink]# bin/yarn-session.sh --help
Usage:
   Optional
     -at,--applicationType <arg>     Set a custom application type for the application on YARN
     -D <property=value>             use value for given property
     -d,--detached                   If present, runs the job in detached mode
     -h,--help                       Help for the Yarn session CLI.
     -id,--applicationId <arg>       Attach to running YARN session
     -j,--jar <arg>                  Path to Flink jar file
     -jm,--jobManagerMemory <arg>    Memory for JobManager Container with optional unit (default: MB)
     -m,--jobmanager <arg>           Set to yarn-cluster to use YARN execution mode.
     -nl,--nodeLabel <arg>           Specify YARN node label for the YARN application
     -nm,--name <arg>                Set a custom name for the application on YARN
     -q,--query                      Display available YARN resources (memory, cores)
     -qu,--queue <arg>               Specify YARN queue.
     -s,--slots <arg>                Number of slots per TaskManager
     -t,--ship <arg>                 Ship files in the specified directory (t for transfer)
     -tm,--taskManagerMemory <arg>   Memory per TaskManager Container with optional unit (default: MB)
     -yd,--yarndetached              If present, runs the job in detached mode (deprecated; use non-YARN specific option instead)
     -z,--zookeeperNamespace <arg>   Namespace to create the Zookeeper sub-paths for high availability mode

主要参数:

-d:分离模式,让Flink YARN客户端后台运行,即YARN session可以后台运行

-jm(--jobManagerMemory):配置JobManager所需内存,默认单位MB

-nm(--name):配置在YARN UI界面上显示的任务名

-qu(--queue):指定YARN队列名

-tm(--taskManager):配置每个TaskManager所使用内存

执行脚本命令向YARN集群申请资源,开启一个YARN会话,启动Flink集群

[root@node01 flink]# bin/yarn-session.sh -nm flink-test
......
2023-06-12 22:03:01,088 INFO  org.apache.hadoop.hdfs.protocol.datatransfer.sasl.SaslDataTransferClient [] - SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
2023-06-12 22:03:01,428 INFO  org.apache.hadoop.hdfs.protocol.datatransfer.sasl.SaslDataTransferClient [] - SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
2023-06-12 22:03:01,457 INFO  org.apache.hadoop.hdfs.protocol.datatransfer.sasl.SaslDataTransferClient [] - SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
2023-06-12 22:03:01,476 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Cannot use kerberos delegation token manager, no valid kerberos credentials provided.
2023-06-12 22:03:01,480 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Submitting application master application_1686577483648_0001
2023-06-12 22:03:01,613 INFO  org.apache.hadoop.yarn.client.api.impl.YarnClientImpl        [] - Submitted application application_1686577483648_0001
2023-06-12 22:03:01,613 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Waiting for the cluster to be allocated
2023-06-12 22:03:01,615 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Deploying cluster, current state ACCEPTED
2023-06-12 22:03:06,406 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - YARN application has been deployed successfully.
2023-06-12 22:03:06,407 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Found Web Interface node03:37824 of application 'application_1686577483648_0001'.
JobManager Web Interface: http://node03:37824

查看Yarn、Flink

访问http://node01:8088/cluster查看yarn

在这里插入图片描述 YARN Session启动之后会给出一个Web UI地址以及一个YARN application ID

2023-06-12 22:03:06,406 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - YARN application has been deployed successfully.
2023-06-12 22:03:06,407 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Found Web Interface node03:37824 of application 'application_1686577483648_0001'.
JobManager Web Interface: http://node03:37824

访问给出的地址:http://node03:37824 在这里插入图片描述

提交作业

可以通过Web UI或者命令行两种方式提交作业

a.通过Web UI提交作业 在这里插入图片描述

b.通过命令行提交作业

1.将Flink程序打Jar包并上传至集群

2.执行命令将任务提交到已经开启的Yarn-Session中运行

客户端可以自行确定JobManager的地址,也可以通过-m或者-jobmanager参数指定JobManager的地址。同时JobManager的地址在YARN Session的启动页面中可以找到。

[root@node01 ~]# /usr/local/program/flink/bin/flink run  -c cn.ybzy.demo.WordCountDemo  /root/demo-1.0-SNAPSHOT.jar

2023-06-12 22:21:08,468 INFO  org.apache.flink.yarn.cli.FlinkYarnSessionCli                [] - Found Yarn properties file under /tmp/.yarn-properties-root.
2023-06-12 22:21:08,468 INFO  org.apache.flink.yarn.cli.FlinkYarnSessionCli                [] - Found Yarn properties file under /tmp/.yarn-properties-root.
2023-06-12 22:21:08,824 WARN  org.apache.flink.yarn.configuration.YarnLogConfigUtil        [] - The configuration directory ('/usr/local/program/flink/conf') already contains a LOG4J config file.If you want to use logback, then please delete or rename the log configuration file.
2023-06-12 22:21:08,860 INFO  org.apache.hadoop.yarn.client.RMProxy                        [] - Connecting to ResourceManager at node01/192.168.1.100:8032
2023-06-12 22:21:08,986 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - No path for the flink jar passed. Using the location of class org.apache.flink.yarn.YarnClusterDescriptor to locate the jar
2023-06-12 22:21:09,049 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Found Web Interface node03:37824 of application 'application_1686577483648_0001'.
Job has been submitted with JobID cdf1ff7b48472b3d7bc413a1ee9700e8

查看、测试作业

通过Flink的Web UI页面查看提交任务的运行情况,Flink会根据运行在JobManger上的作业所需要的Slot数量动态分配TaskManager资源。

在这里插入图片描述

发送数据测试

[root@node01 program]# nc -lk 8888
abc bcd cdf

在这里插入图片描述

单作业模式

在YARN环境中,由于有了外部平台做资源调度,因此也可以直接向YARN提交一个单独的作业,从而启动一个Flink集群。

提交作业

执行命令提交作业

[root@node01 flink]# bin/flink run -t yarn-per-job -c cn.ybzy.demo.WordCountDemo  /root/demo-1.0-SNAPSHOT.jar
.....
2023-06-12 22:46:26,984 INFO  org.apache.hadoop.hdfs.protocol.datatransfer.sasl.SaslDataTransferClient [] - SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
2023-06-12 22:46:27,009 INFO  org.apache.hadoop.hdfs.protocol.datatransfer.sasl.SaslDataTransferClient [] - SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
2023-06-12 22:46:27,029 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Cannot use kerberos delegation token manager, no valid kerberos credentials provided.
2023-06-12 22:46:27,034 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Submitting application master application_1686577483648_0004
2023-06-12 22:46:27,061 INFO  org.apache.hadoop.yarn.client.api.impl.YarnClientImpl        [] - Submitted application application_1686577483648_0004
2023-06-12 22:46:27,061 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Waiting for the cluster to be allocated
2023-06-12 22:46:27,063 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Deploying cluster, current state ACCEPTED
2023-06-12 22:46:31,086 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - YARN application has been deployed successfully.
2023-06-12 22:46:31,087 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Found Web Interface node02:42192 of application 'application_1686577483648_0004'.
Job has been submitted with JobID dfcb72ebf4a5f33d8e7967d6beaaf96d

注意:在使用-d参数启动时,启动过程中可能会出现如下异常:

Exception in thread "Thread-5" java.lang.IllegalStateException: Trying to access closed classloader. Please check if you store classloaders directly or indirectly in static fields. If the stacktrace suggests that the leak occurs in a third party library and cannot be fixed immediately, you can disable this check with the configuration 'classloader.check-leaked-classloader'.
        at org.apache.flink.util.FlinkUserCodeClassLoaders$SafetyNetWrapperClassLoader.ensureInner(FlinkUserCodeClassLoaders.java:184)
        at org.apache.flink.util.FlinkUserCodeClassLoaders$SafetyNetWrapperClassLoader.getResource(FlinkUserCodeClassLoaders.java:208)
        at org.apache.hadoop.conf.Configuration.getResource(Configuration.java:2780)
        at org.apache.hadoop.conf.Configuration.getStreamReader(Configuration.java:3036)
        at org.apache.hadoop.conf.Configuration.loadResource(Configuration.java:2995)
        at org.apache.hadoop.conf.Configuration.loadResources(Configuration.java:2968)
        at org.apache.hadoop.conf.Configuration.getProps(Configuration.java:2848)
        at org.apache.hadoop.conf.Configuration.get(Configuration.java:1200)
        at org.apache.hadoop.conf.Configuration.getTimeDuration(Configuration.java:1812)
        at org.apache.hadoop.conf.Configuration.getTimeDuration(Configuration.java:1789)
        at org.apache.hadoop.util.ShutdownHookManager.getShutdownTimeout(ShutdownHookManager.java:183)
        at org.apache.hadoop.util.ShutdownHookManager.shutdownExecutor(ShutdownHookManager.java:145)
        at org.apache.hadoop.util.ShutdownHookManager.access$300(ShutdownHookManager.java:65)
        at org.apache.hadoop.util.ShutdownHookManager$1.run(ShutdownHookManager.java:102)

解决方案是在flink的/conf/flink-conf.yaml配置文件中设置

classloader.check-leaked-classloader: false

查看Yarn、Flink

访问http://node01:8088/cluster查看 在这里插入图片描述

打开Flink Web UI页面进行监控

a.访问启动日志中的JobManager地址,如:node02:42192

在这里插入图片描述 b.也可以在http://node01:8088/cluster页面中跳转到Flink的Web UI界面

在这里插入图片描述 在这里插入图片描述

查看、取消作业

[root@node01 flink]# bin/flink list -t yarn-per-job -Dyarn.application.id=application_1686577483648_0004

2023-06-12 22:55:43,755 INFO  org.apache.flink.yarn.cli.FlinkYarnSessionCli                [] - Found Yarn properties file under /tmp/.yarn-properties-root.
2023-06-12 22:55:43,755 INFO  org.apache.flink.yarn.cli.FlinkYarnSessionCli                [] - Found Yarn properties file under /tmp/.yarn-properties-root.
2023-06-12 22:55:43,864 WARN  org.apache.flink.yarn.configuration.YarnLogConfigUtil        [] - The configuration directory ('/usr/local/program/flink/conf') already contains a LOG4J config file.If you want to use logback, then please delete or rename the log configuration file.
2023-06-12 22:55:43,927 INFO  org.apache.hadoop.yarn.client.RMProxy                        [] - Connecting to ResourceManager at node01/192.168.1.100:8032
2023-06-12 22:55:44,087 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - No path for the flink jar passed. Using the location of class org.apache.flink.yarn.YarnClusterDescriptor to locate the jar
2023-06-12 22:55:44,159 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Found Web Interface node02:42192 of application 'application_1686577483648_0004'.
Waiting for response...
------------------ Running/Restarting Jobs -------------------
12.06.2023 22:46:30 : dfcb72ebf4a5f33d8e7967d6beaaf96d : Flink Streaming Job (RUNNING)
--------------------------------------------------------------
No scheduled jobs.

取消作业

# 如果取消作业,整个Flink集群会停掉
bin/flink cancel -t yarn-per-job -Dyarn.application.id=application_XXXX <jobId>
[root@node01 flink]# bin/flink cancel -t yarn-per-job -Dyarn.application.id=application_1686577483648_0004  dfcb72ebf4a5f33d8e7967d6beaaf96d

SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
2023-06-12 22:57:06,430 INFO  org.apache.flink.yarn.cli.FlinkYarnSessionCli                [] - Found Yarn properties file under /tmp/.yarn-properties-root.
2023-06-12 22:57:06,430 INFO  org.apache.flink.yarn.cli.FlinkYarnSessionCli                [] - Found Yarn properties file under /tmp/.yarn-properties-root.
Cancelling job dfcb72ebf4a5f33d8e7967d6beaaf96d.
2023-06-12 22:57:06,560 WARN  org.apache.flink.yarn.configuration.YarnLogConfigUtil        [] - The configuration directory ('/usr/local/program/flink/conf') already contains a LOG4J config file.If you want to use logback, then please delete or rename the log configuration file.
2023-06-12 22:57:06,638 INFO  org.apache.hadoop.yarn.client.RMProxy                        [] - Connecting to ResourceManager at node01/192.168.1.100:8032
2023-06-12 22:57:06,830 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - No path for the flink jar passed. Using the location of class org.apache.flink.yarn.YarnClusterDescriptor to locate the jar
2023-06-12 22:57:06,895 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Found Web Interface node02:42192 of application 'application_1686577483648_0004'.
Cancelled job dfcb72ebf4a5f33d8e7967d6beaaf96d.

应用模式

应用模式同样非常简单,与单作业模式类似,直接执行flink run-application命令即可。

提交作业

执行命令提交作业

[root@node01 flink]# bin/flink run-application -t yarn-application -c cn.ybzy.demo.WordCountDemo  /root/demo-1.0-SNAPSHOT.jar

2023-06-12 23:01:00,465 INFO  org.apache.hadoop.hdfs.protocol.datatransfer.sasl.SaslDataTransferClient [] - SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
2023-06-12 23:01:00,751 INFO  org.apache.hadoop.hdfs.protocol.datatransfer.sasl.SaslDataTransferClient [] - SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
2023-06-12 23:01:00,799 INFO  org.apache.hadoop.hdfs.protocol.datatransfer.sasl.SaslDataTransferClient [] - SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
2023-06-12 23:01:00,817 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Cannot use kerberos delegation token manager, no valid kerberos credentials provided.
2023-06-12 23:01:00,821 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Submitting application master application_1686577483648_0005
2023-06-12 23:01:00,847 INFO  org.apache.hadoop.yarn.client.api.impl.YarnClientImpl        [] - Submitted application application_1686577483648_0005
2023-06-12 23:01:00,848 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Waiting for the cluster to be allocated
2023-06-12 23:01:00,849 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Deploying cluster, current state ACCEPTED
2023-06-12 23:01:05,123 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - YARN application has been deployed successfully.
2023-06-12 23:01:05,124 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Found Web Interface node03:40762 of application 'application_1686577483648_0005'.

在这里插入图片描述

查看、取消作业

查看作业

[root@node01 flink]# bin/flink list -t yarn-application -Dyarn.application.id=application_1686577483648_0005

2023-06-12 23:02:55,490 INFO  org.apache.flink.yarn.cli.FlinkYarnSessionCli                [] - Found Yarn properties file under /tmp/.yarn-properties-root.
2023-06-12 23:02:55,490 INFO  org.apache.flink.yarn.cli.FlinkYarnSessionCli                [] - Found Yarn properties file under /tmp/.yarn-properties-root.
2023-06-12 23:02:55,630 WARN  org.apache.flink.yarn.configuration.YarnLogConfigUtil        [] - The configuration directory ('/usr/local/program/flink/conf') already contains a LOG4J config file.If you want to use logback, then please delete or rename the log configuration file.
2023-06-12 23:02:55,689 INFO  org.apache.hadoop.yarn.client.RMProxy                        [] - Connecting to ResourceManager at node01/192.168.1.100:8032
2023-06-12 23:02:55,844 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - No path for the flink jar passed. Using the location of class org.apache.flink.yarn.YarnClusterDescriptor to locate the jar
2023-06-12 23:02:55,905 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Found Web Interface node03:40762 of application 'application_1686577483648_0005'.
Waiting for response...
------------------ Running/Restarting Jobs -------------------
12.06.2023 23:01:05 : a66d8fa98d23210d36b5b005ff0a1c53 : Flink Streaming Job (RUNNING)
--------------------------------------------------------------
No scheduled jobs.

取消作业

[root@node01 flink]# bin/flink cancel -t yarn-application -Dyarn.application.id=application_1686577483648_0005 a66d8fa98d23210d36b5b005ff0a1c53

2023-06-12 23:03:49,038 INFO  org.apache.flink.yarn.cli.FlinkYarnSessionCli                [] - Found Yarn properties file under /tmp/.yarn-properties-root.
2023-06-12 23:03:49,038 INFO  org.apache.flink.yarn.cli.FlinkYarnSessionCli                [] - Found Yarn properties file under /tmp/.yarn-properties-root.
Cancelling job a66d8fa98d23210d36b5b005ff0a1c53.
2023-06-12 23:03:49,156 WARN  org.apache.flink.yarn.configuration.YarnLogConfigUtil        [] - The configuration directory ('/usr/local/program/flink/conf') already contains a LOG4J config file.If you want to use logback, then please delete or rename the log configuration file.
2023-06-12 23:03:49,204 INFO  org.apache.hadoop.yarn.client.RMProxy                        [] - Connecting to ResourceManager at node01/192.168.1.100:8032
2023-06-12 23:03:49,364 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - No path for the flink jar passed. Using the location of class org.apache.flink.yarn.YarnClusterDescriptor to locate the jar
2023-06-12 23:03:49,427 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Found Web Interface node03:40762 of application 'application_1686577483648_0005'.
Cancelled job a66d8fa98d23210d36b5b005ff0a1c53.

从HDFS读取提交任务

通过yarn.provided.lib.dirs配置选项指定位置,将flink的依赖上传到远程

将Flink本身的依赖和用户jar预先上传到HDFS,而不需要单独发送到集群,这就使得作业提交更加轻量了

上传flink的lib和plugins到HDFS上

[root@node01 flink]#  hadoop fs -mkdir /flink-dist
[root@node01 flink]# hadoop fs -put lib/ /flink-dist
[root@node01 flink]# hadoop fs -put plugins/ /flink-dist

上传Flink开发程序jar包到HDFS

[root@node01 flink]# hadoop fs -mkdir /flink-jar
[root@node01 flink]# hadoop fs -put /root/demo-1.0-SNAPSHOT.jar /flink-jar

提交作业

[root@node01 flink]# bin/flink run-application -t yarn-application -Dyarn.provided.lib.dirs="hdfs://node01:9000/flink-dist"  -c cn.ybzy.demo.WordCountDemo hdfs://node01:9000/flink-jar/demo-1.0-SNAPSHOT.jar

2023-06-12 23:19:20,128 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Cluster specification: ClusterSpecification{masterMemoryMB=2500, taskManagerMemoryMB=2200, slotsPerTaskManager=3}
2023-06-12 23:19:20,617 INFO  org.apache.hadoop.hdfs.protocol.datatransfer.sasl.SaslDataTransferClient [] - SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
2023-06-12 23:19:20,721 INFO  org.apache.hadoop.hdfs.protocol.datatransfer.sasl.SaslDataTransferClient [] - SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
2023-06-12 23:19:20,783 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Cannot use kerberos delegation token manager, no valid kerberos credentials provided.
2023-06-12 23:19:20,788 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Submitting application master application_1686577483648_0009
2023-06-12 23:19:20,816 INFO  org.apache.hadoop.yarn.client.api.impl.YarnClientImpl        [] - Submitted application application_1686577483648_0009
2023-06-12 23:19:20,816 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Waiting for the cluster to be allocated
2023-06-12 23:19:20,817 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Deploying cluster, current state ACCEPTED
2023-06-12 23:19:24,086 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - YARN application has been deployed successfully.
2023-06-12 23:19:24,086 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Found Web Interface node02:43653 of application 'application_1686577483648_0009'.

在这里插入图片描述 在这里插入图片描述

Yarn模式高可用

Standalone模式中, 同时启动多个Jobmanager, 一个为leader其他为standby, 当leader挂了, 其他的才会有一个成为leader

yarn的高可用是同时只启动一个Jobmanager, 当这个Jobmanager挂了之后, yarn会再次启动一个, 其实是利用的yarn的重试次数来实现的高可用

在yarn-site.xml中配置

<property>
  <name>yarn.resourcemanager.am.max-attempts</name>
  <value>4</value>
  <description>The maximum number of application master execution attempts.  </description>
</property>

在flink-conf.yaml中配置

# 次数应该小于yarn-site.xml中配置重试次数
yarn.application-attempts: 3
high-availability.type: zookeeper
high-availability.storageDir: hdfs://node01:9000/flink/yarn/ha
high-availability.zookeeper.quorum: node01:2181,node02:2181,node03:2181
high-availability.zookeeper.path.root: /flink-yarn

启动yarn-session

[root@node01 flink]# bin/yarn-session.sh -nm flink-test

kill一个Jobmanager,查看复活情况

jps

kill -9 pid

标签:Flink,06,Standalone,flink,yarn,模式,2023,apache,org
From: https://blog.51cto.com/chencoding/7569278

相关文章

  • 软件设计模式系列之十二——外观模式
    在软件设计中,经常会遇到需要与复杂子系统进行交互的情况。为了简化客户端与子系统之间的交互,提高系统的可维护性和可用性,外观模式应运而生。外观模式(FacadePattern)是一种结构型设计模式,它提供一个统一的界面,用于访问系统中的一组相关接口,从而隐藏了系统的复杂性。在本文中,我们将......
  • Flink的Checkpoint状态和Kafka Broker上的提交位点一致
    Flink的Checkpoint状态和KafkaBroker上的提交位点一致消息队列Kafka连接器_实时计算Flink版-阿里云帮助中心https://help.aliyun.com/zh/flink/developer-reference/kafka-connector消息队列Kafka更新时间:2023-09-1910:33:27  本文为您介绍如何使用消息队列Kaf......
  • GPIO的八种工作模式
    STM开发方式基于寄存器--->程序员直接配置寄存器基于标准库--->利用ST官方封装好的库函数基于HAL库--->图形化界面我目前主要学习基于标准库的,STM32库是由ST公司针对STM32提供的函数接口,即API(ApplicationProgramInterface),开发者可调用这些函数接口来配置STM32的寄存器,使开......
  • 记录常用设计模式
    策略模式+工厂模式1.四种玩法,玩法出入参类型一致,根据类型区分具体玩法。/***玩法枚举类**@authorjiangym*@version1.0*@date2022/9/2820:10*/publicenumTricksEnum{/***vip身份用户*/VIP_USER(1,"vip身份用户"),/**......
  • JOIN org.apache.flink.table.api.TableException: Cannot generate a valid execut
    实践:1、--enricheachorderwithcustomerinformationSELECTo.order_id,o.total,c.country,c.zipFROMOrdersASoJOINCustomersFORSYSTEM_TIMEASOFo.proc_timeAScONo.customer_id=c.id;  org.apache.flink.table.api.TableException:Canno......
  • 软件设计模式系列之十一——装饰模式
    当谈到设计软件系统时,经常需要考虑如何使系统更加灵活、可扩展和易维护。设计模式是一种被广泛采用的方法,用于解决常见的设计问题,并提供了一套可重用的解决方案。装饰模式(DecoratorPattern)是一种结构型设计模式,它允许您在不改变对象接口的情况下动态地添加对象的功能或责任。在本......
  • 设计模式
    1.设计模式分为:设计:a.就是设计原则b.设计模式的来源依据,是怎么来的.c.是一种指导思想.什么是设计?a.设计按照哪一种思路或标准来实现功能.b.根据指导思想,结合开发经验总结的"模板".c.关联:从设计到模式.为什么有设计?a.功能相同,但有不同的实现方案.b.前提是......
  • HeadFirst设计模式学习之责任链模式
    【一】介绍引入当你想要让一个以上的对象有机会能够处理某个请求的时候,就使用责任链模式(ChainofResponsibilityPattern)。【二】场景引入自从推出Java版本的糖果机之后,万能糖果公司收到的电子邮件数量已超出他们所能处理的范围。据他们自己分析,所收到的电子邮件有四类:......
  • 设计模式
      设计模式(Designpattern)是一套被反复使用、多数人知晓的、经过分类编目的、代码设计经验的总结。使用设计模式是为了可重用代码、让代码更容易被他人理解、保证代码可靠性。     毫无疑问,设计模式于己于他人于系统都是多赢的,设计模式使代码编制真正工程化,设计模式是软件......
  • 趣解设计模式之《珍爱生命,远离只狼》
    〇、小故事小王最近打算入手一款叫《只狼》的游戏,这款游戏特别的硬核,也就是说,普通的小怪战斗力都特别的强,而作为主角的我们,也很容易被小兵打败。除了游戏中的小兵和Boss很难打败之外,如果在游戏中被杀了,也需要从这章的开头开始打,没办法直接从死亡点附近复活,这个就又为游戏增加了......