首页 > 其他分享 >pytorch(5)

pytorch(5)

时间:2023-09-19 22:22:26浏览次数:44  
标签:pytorch 复杂度 模型

 

 

 

 

 

模型复杂度

标签:pytorch,复杂度,模型
From: https://www.cnblogs.com/gooutlook/p/17715988.html

相关文章

  • pytorch学习了解
    importtorchvisionfrommodel1testimport*fromtorch.utils.dataimportDataLoaderfromtorch.utils.tensorboardimportSummaryWritertrian_data=torchvision.datasets.CIFAR10('./datasets',train=True,transform=torchvision.transforms.ToTensor())t......
  • 《动手学深度学习 Pytorch版》 7.2 使用块的网络(VGG)
    importtorchfromtorchimportnnfromd2limporttorchasd2l7.2.1VGG块AlexNet没有提供一个通用的模板来指导后续的研究人员设计新的网络,如今研究人员转向了块的角度思考问题。通过使用循环和子程序,可以很容易地在任何现代深度学习框架的代码中实现这些重复的架构。......
  • pytorch(3)损失函数
    1损失函数|Mean-SquaredLosshttps://zhuanlan.zhihu.com/p/35707643       2交叉熵损失函数https://www.zhihu.com/tardis/zm/art/35709485?source_id=1003                     ......
  • pytorch(2) softmax回归
    https://tangshusen.me/Dive-into-DL-PyTorch/#/chapter03_DL-basics/3.4_softmax-regression '''softmax将未规范化的预测变换为非负数并且总和为1我们首先对每个未规范化的预测求幂,这样可以保证输出非负。同时令模型可保持导的性质为了保证最终输出的概率值总和为1......
  • pytorch学习(1)
      https://pytorch.zhangxiann.com/1-ji-ben-gai-nian/1.1-pytorch-jian-jie-yu-an-zhuang激活环境condaactivatenerf测试cuda可用 安装画图python3-mpipinstall-Upippython3-mpipinstall-Umatplotlib......
  • 搭建CUDA、CUDNN、Pytorch环境(Windows10/11)
    摘要:搭建Windows系统下Cuda+CUDNN环境,注意C盘一定要大,建议1T+SSD参考:  https://blog.csdn.net/weixin_61164016/article/details/127564466  https://blog.csdn.net/qq_43308156/article/details/127479544  https://blog.csdn.net/weixin_45068330/article/details/121......
  • 《动手学深度学习 Pytorch版》 6.4 多输入多输出通道
    importtorchfromd2limporttorchasd2l6.4.1多输入通道简言之,多通道即为单通道之推广,各参数对上即可。defcorr2d_multi_in(X,K):#先遍历“X”和“K”的第0个维度(通道维度),再把它们加在一起returnsum(d2l.corr2d(x,k)forx,kinzip(X,K))X=torch.t......
  • 《动手学深度学习 Pytorch版》 6.5 汇聚层
    importtorchfromtorchimportnnfromd2limporttorchasd2l6.5.1最大汇聚和平均汇聚汇聚层和卷积层类似,区别在于汇聚层不带包含参数,汇聚操作是确定性的,通常计算汇聚窗口中所有元素的最大值或平均值,即最大汇聚和平均汇聚。defpool2d(X,pool_size,mode='max'):p......
  • 《动手学深度学习 Pytorch版》 6.6 卷积神经网络
    importtorchfromtorchimportnnfromd2limporttorchasd2l6.6.1LeNetLetNet-5由两个部分组成:-卷积编码器:由两个卷积核组成。-全连接层稠密块:由三个全连接层组成。模型结构如下流程图(每个卷积块由一个卷积层、一个sigmoid激活函数和平均汇聚层组成):全连接......
  • 《动手学深度学习 Pytorch版》 6.7 填充和步幅
    6.3.1填充虽然我们用的卷积核较小,每次只会丢失几像素,但是如果应用多层连续的卷积层,累积的像素丢失就会很多。解决此问题的方法为填充。填充后的输出形状将为\((n_h-k_h+p_h+1)\times(n_w-k_w+p_w+1)\)importtorchfromtorchimportnndefcomp_conv2d(conv2d,X):X......