对内存里float4字节的好奇
初学计算机都要学那个什么二进制十进制什么补码 反码那些玩意儿哈,由于最近要做一个单片机往另外一个单片机发数据的需求,直接c语言指针 然后float4字节传过去不就得了吗,麻烦就麻烦在这里 另一端编程机是个啥鸟lua 麻烦的一逼,integer这种我们就不说了哈因为实在是太直白了没啥技术含量,我们今天来啃float这个硬骨头。你知不知道什么叫ieee754 。float到底可表示的范围是多少到多少。以前听过一个老手讲的课 ,说实话这玩意儿编程多年的老手 说的都模棱两可。当我啃着感觉稍微有点硬了 又不断的查资料 探索。我知道我又得写一篇博文以做记录了。还好不算很硬。没经过多少捣鼓就出来了。c#这玩意儿 用着还真是顺滑,当然纯c嵌入式我也干了一年多了 对这种“低级语言”以及计算机底层又有了稍微深刻一点的认识了。这么多年了c#用顺手了 习惯用它做基础算法和逻辑验证 ,然后移植为其它语言的。
关于ieee754的资料网上大把的 你就随便搜一篇吧 比如这:
在线测试工具:
https://www.h-schmidt.net/FloatConverter/IEEE754.html
我们也是看了后 照着原理用代码实现的。
有没有想过c语言以及其他高级语言里编程基础里的float数据类型的4个字节在计算机里到底是怎么转换显示在你屏幕上的 是不是有时候我们从来没想过一个东西是怎么来的。float是4字节的,那么我们给一串4字节。如果是c#你还不知道有bitconverter这个函数怎么办?
我自己参考然后成功实现了过后的一些理解
看 整体概览中心思想 还是跟我们十进制一样的 底数+指数的形式 第一个有效数字肯定是1 开始的 所以最前面一位去掉(解析的时候默认它是有的)比如 1x10^3 这种形式。只不过我们这里的 指数和底数 都是二进制。小数部分 代码处理 为什么是负的次方 ,稍微停顿下 11.01 二进制还有小数这个比较费解,那么通行于二进制整数的规则 进位则x2 ,那么小数部分则是往后一位则/2 想想我们十进制数 2的负2次方 就是 1/(2x2) 就是四分之一 是不是啊 。那么我们这里也是同样的道理。
指数部分 ,这里也是二进制的指数 不是10进制的 ,这里有8位 那么 就是 底数部分可以x2^-127 到128 次方 。虽然第一次理解有点别扭 ,稍微梳理下 整体感觉还是比较顺畅的。说明计算机科学家还是经过深思熟虑考虑过的。
关于数值精确表示与非精确表示
然后另外一个 ,基于这种原理 机制,活了这么多年 你才发现 这个float有时候 并不能 精确表示一个数 0.125 这种 还好说,为啥能够精确标识啊,你看他小数点往后完全符合描述的 -2次方 也就是二分机制 ,相信通过上面那些理解 不用我搬那些高深的理论 讲解你也能够明白 从1 分下来 0.5 0.25 0.125 刚好分完。
看一个不能够精确分完的1567.37 -> 1567.36987304688 看 是不是很神奇的事情出现了 ,这不是bug 就是由于他机制本身的原因所致的。我们不能改变它 就只能与他共存。 就像有理数除某些数除不尽 一样的 这里也是机制本身决定的 暂且理解为类似的东西吧。
下面是阅读了上面的参考文献后经过验证的代码成功实现
我代码里注释已经写得相当详尽了
1 //ieee754 格式float解析
2 public void iee754BytesToVal(byte[] bytes)
3 {
4 //所有的位序列
5 bool[] bits = new bool[32];
6
7
8
9 //先进行翻转
10 Array.Reverse(bytes);
11
12 //进行数据预处理
13 int bitarIndx=0;
14 for (int i = 0; i < 8; i++)
15 {
16 bits[bitarIndx++] = (bytes[0] & (0x80>>i))>0?true:false;
17 }
18
19 for (int i = 0; i < 8; i++)
20 {
21 bits[bitarIndx++] = (bytes[1] & (0x80 >> i)) > 0 ? true : false;
22 }
23
24 for (int i = 0; i < 8; i++)
25 {
26 bits[bitarIndx++] = (bytes[2] & (0x80 >> i)) > 0 ? true : false;
27 }
28
29 for (int i = 0; i < 8; i++)
30 {
31 bits[bitarIndx++] = (bytes[3] & (0x80 >> i)) > 0 ? true : false;
32 }
33
34 for (int i = 0; i < bits.Length; i++)
35 {
36 Console.Write(bits[i] == true ? "1" : "0");
37 Console.Write(" ");
38 }
39
40
41 //获取某个位 与上 指定的位
42 //获取符号位
43 int singl = -1;
44
45 if (bits[0]== true)
46 {
47 singl = -1;
48 Console.WriteLine("负数");
49 }
50 else
51 {
52 singl = 1;
53 Console.WriteLine("正数");
54 }
55
56
57 //阶码0 1字节
58 //取出对应的阶码位 7f80
59
60 sbyte exponent = 0;
61 for (int i = 0; i < 8; i++)
62 {
63 byte bitSetPoint=0x00;
64 if( bits[1+i]==true)
65 {
66 bitSetPoint = 0x80;
67 }
68 else
69 {
70 bitSetPoint = 0x00;
71 }
72
73 exponent = (sbyte)(exponent | (bitSetPoint >> i));
74
75 }
76
77
78 //0x7f
79 sbyte exponentID = 0x7f;
80 sbyte exponentReal = (sbyte)(exponent - exponentID);
81
82
83 //尾数 23位
84 double mantissa=0;
85 for (int i = 0; i < 23; i++)
86 {
87 if(bits[9+i]==true)
88 {
89 mantissa = mantissa + Math.Pow(2, -(i + 1));
90 }
91 else
92 {
93 mantissa = mantissa + 0;
94 }
95 }
96 mantissa = (1 + mantissa) * singl * Math.Pow(2, exponentReal);
97
98
99 Console.WriteLine("最终的数是:" + mantissa);
100
101 }
1 public void iee754ValToBytes(float val)
2 {
3 Console.WriteLine(val.ToString());
4 string valStr = val.ToString();
5
6 //符号位
7 int singl = 1;
8 if (valStr.IndexOf('-') != -1)
9 {
10 singl = -1;
11 valStr.Replace("-", "");
12 }
13 else
14 singl = 1;
15
16 string[] valPartStrs = valStr.Split('.');
17
18 string frontPartStr = "0";
19 if (valPartStrs.Length > 0)
20 frontPartStr = valPartStrs[0];
21 string afterPartStr = "0";
22 if (valPartStrs.Length > 1)
23 afterPartStr = valPartStrs[1];
24
25 //整数部分处理
26 List<bool> frontBits = new List<bool>();
27 int frontNum = int.Parse(frontPartStr);
28 if (frontNum != 0)
29 {
30
31
32 //整数部分 采用短除法
33 long dividend = frontNum;
34 int indx = 0;
35 do
36 {
37 long yu = dividend % 2;
38 dividend /= 2;
39 frontBits.Add(yu == 1 ? true : false);
40 } while (dividend > 0);
41 indx = 0;
42
43 //注意这里有一个反转 整数部分短除法 和小数部分的x2取整不一样的
44 frontBits.Reverse();
45
46 Console.WriteLine("整数部分");
47 for (int i = 0; i < frontBits.Count; i++)
48 {
49 Console.Write(frontBits[i] == true ? "1" : "0");
50 Console.Write(" ");
51 }
52 Console.WriteLine();
53 }
54
55 // 小数部分采用*2取整方法
56 List<bool> afterBits = new List<bool>();
57 int afterNum = int.Parse(afterPartStr);
58 if (afterNum != 0)
59 {
60 afterPartStr = "0." + afterPartStr;
61
62
63
64 float afterApendOne = float.Parse(afterPartStr);
65 for (int i = 0; i < 23 - frontBits.Count; i++)
66 {
67
68 afterApendOne = afterApendOne * 2;
69 if (Math.Floor(afterApendOne) == 1)
70 afterBits.Add(true);
71 else
72 afterBits.Add(false);
73 string[] tmpxiaoshu = afterApendOne.ToString().Split('.');
74 if (tmpxiaoshu.Length > 1)
75 {
76 afterApendOne = float.Parse("0." + tmpxiaoshu[1]);
77 if (afterApendOne == 0)
78 break;
79 }
80 else
81 {
82 break;
83 }
84 }
85
86 }
87 //指数部分
88 sbyte exponent = (sbyte)((sbyte)127 + (sbyte)frontBits.Count - 1);
89
90 //总览数据----------------------------------------------------------------------
91 List<bool> finalBits = new List<bool>();
92 //附上符号位
93
94 if (singl > 0)
95 finalBits.Add(false);
96 else
97 finalBits.Add(true);
98
99
100 Console.WriteLine("指数部分");
101 for (int i = 0; i < 8; i++)
102 {
103 bool exponentBit = (exponent & (0x80 >> i)) > 0 ? true : false;
104 finalBits.Add(exponentBit);
105
106 Console.Write(exponentBit == true ? "1" : "0");
107 Console.Write(" ");
108 }
109 Console.WriteLine();
110
111 //附上整数部分
112 for (int i = 1; i < frontBits.Count; i++)
113 {
114 finalBits.Add(frontBits[i]);
115 }
116
117 //附上小数部分
118 for (int i = 0; i < afterBits.Count; i++)
119 {
120 finalBits.Add(afterBits[i]);
121 }
122
123
124 //IEEE754 float 标准 32位 不足的补0
125 Console.WriteLine("---------------------------------");
126 for (int i = 0; i < finalBits.Count; i++)
127 {
128 Console.Write(finalBits[i] == true ? "1" : "0");
129 Console.Write(" ");
130 }
131 if (finalBits.Count < 32)
132 {
133 int beaddcount = 32 - finalBits.Count;
134 for (int i = 0; i < (beaddcount); i++)
135 {
136 finalBits.Add(false);
137 Console.Write("0");
138 Console.Write(" ");
139 }
140 }
141 Console.WriteLine();
142 Console.WriteLine("---------------------------------");
143
144 //利用前面的例子进行反向转换测试
145
146 UInt32 reconvert = 0x00000000;
147
148
149 for (int i = 0; i < 32; i++)
150 {
151 UInt32 bitSetPoint = 0x00000000;
152 if (finalBits[i] == true)
153 {
154 bitSetPoint = 0x80000000;
155 }
156 else
157 {
158 bitSetPoint = 0x00000000;
159 }
160 reconvert = reconvert | (bitSetPoint >> i);
161 }
162
163 byte[] recdata = BitConverter.GetBytes(reconvert);
164
165 Console.WriteLine("-------------开启再次转换过程--------------------");
166 iee754BytesToVal(recdata);
167 }
那么怎么验证我们的算法是正确的呢,很简单啊把我们拿出去的float变量转的bytes 再转float 结果一致就代表成功了,我们也可以利用c#自带的BitConverter.GetBytes(float)得到的4字节进行验证。
1 iee754ValToBytes(1567.37f);
2 //floattobytes(19.625f);
3 return;
4 float f = -7434.34f;
5 byte[] floatar = BitConverter.GetBytes(f);
6 Console.Write("{0:X2}", floatar[0]);
7 Console.Write("{0:X2}", floatar[1]);
8 Console.Write("{0:X2}", floatar[2]);
9 Console.Write("{0:X2}", floatar[3]);
10 Console.WriteLine();
11 iee754BytesToVal(floatar);
关于代码的正确性已经毋庸置疑了哈,文章开头的图已经给出结果了。
关于通用性
首先所有的编程环境都遵循这个标准 ,不管你c c++ c# java ,c# 里提取的bytes 放到 c++下去解析 是能解析出来的 已经测试过了(都不用解析 就是一个指针内存操作),Java我没试过相信是一样的。关于c++的处理 , 看c++指针直接操作内存的优势和 便利性就出来了。
c语言里获取的字节码转换为float:
1 float channelUpLimit = *(float *)&value[0];
float转换为字节以相反方式操作就可以了,指针用伪数组操作方式就可以了,你懂的,c语言特别善于玩儿这种内存控制。
编写代码时精度问题的陷阱
这又隐申出另外的问题,就是编程语言的数制精度问题。c语言中 float fff = 4796 / 10.0;得到的不是479.6 而是个不知道什么的玩意儿 479.600006 无论用 什么floor这些函数*10+0.5 又/10 处理都相当棘手。网上说用double 可以避免很多问题 ,试了下 用 double fff = 4796 / 10.0; 得到的确实是479.600000
https://www.yisu.com/zixun/371395.html
老早就看到前同事在代码中写一些这种玩意儿 ,刚入行不久一脸懵逼 这是什么神经病代码
1 float a=0, b=0, c=0;
2 if (a - b < 0.00001)
3 c = 0;
4 else
5 c = a - b;
我了个去c语言中都这么麻烦的吗。2.5 有时候可能并不是2.5 由于计算机底层cpu运算的一些奇奇怪怪的玄机 我们也懒得去管。总之就算2.5 有可能实际是2.49999999999999999999999999
包括javascript 很多都有数制问题。
这段代码的问题在c# c 中都存在 并且float的标准都是遵循统一的规范 IEEE754 的(c#的二进制在c中解析的结果一样
1 float test = 0.1f;
2 if (test == (1 - 0.9))
3 {
4 Console.WriteLine("正常");
5 }
6 else
7 {
8 Console.WriteLine("what!!!");
9 }
聪明如你,看了上面的相信你已经知道怎么解决了。c#里更加无脑 傻瓜化的用decimal就可以了。