掌握参变量方程的求导法则。记住参变量函数的求导公式,和极坐标下向径与切线的夹角的正切公式.
等角螺线、对数螺线或生长螺线是在自然界常见的螺线,在极坐标系(r, θ)中,这个曲线可以写为或
因此叫做“对数”螺线。之所以叫等角螺线,是因为在极坐标中,螺线和射线的夹角始终是一个固定夹角,如下图所示,蓝线每次穿过射线时,其夹角是固定的,也就是等角。
鹦鹉螺的贝壳像等角螺线。鹰以等角螺线的方式接近它们的猎物。昆虫以等角螺线的方式接近光源。旋涡星系的旋臂差不多是等角螺线。低气压(热带气旋、温带气旋等)的外观像等角螺线。
等角螺线是由笛卡儿在1638年发现的。雅各布.伯努利后来重新研究之。他发现了等角螺线的许多特性,如等角螺线经过各种适当的变换之后仍是等角螺线。他十分惊叹和欣赏这曲线的特性,故要求死后将之刻在自己的墓碑上,并附词「纵使改变,依然故我」。可惜雕刻师误将阿基米德螺线刻了上去。(阿基米德螺线的极坐标方程式为:)
斐波那契数列就是1,1,2,3,5,8,13,21,34,55,89……这样的数列。
其特点是前两个数加起来就是下一个数
用这些数画出来的半圆,可以拼接成下面的螺线形状,这就是斐波那契螺线。
不过斐波那契螺线仅仅是对一种叫黄金螺线(Golden spiral)的近似,黄金螺线是一种内涵黄金分割比例的对数螺线,下图红色的才是黄金曲线,绿色的是“假黄金螺线”(斐波那契螺线),近似却不重合。
因为对数螺线具有等角性,受环境影响,很多直线运动会转变为等角螺线运动。
我们以飞蛾扑火为例:
亿万年来,夜晚活动的蛾子等昆虫都是靠月光和星光来导航,因为天体距离很远,这些光都是平行光,可以作为参照来做直线飞行。如下图所示,注意蛾子只要按照固定夹角飞行,就可以飞成直线,这样飞才最节省能量。
但自从人类学会了使用火,这些人造光源因为很近,光线成中心放射线状,可怜的蛾子就开始倒霉了。蛾子还以为按照与光线的固定夹角飞行就是直线运动,结果越飞越坑爹,飞成了等角螺线,最后飞到火里去了,这种现象还被人类称为昆虫的正趋光性。
标签:函数,导数,蛾子,斐波,螺线,参变量,那契,夹角 From: https://www.cnblogs.com/mengqing80/p/17692660.html