观前提示:如有对式子过敏现象请抓紧点赞后退出,本文字数大约 8.0K,加载 \(\LaTeX\) 可能需要一段时间 .
在写 9.6 闲话 的时候就在想:对于这种推导,能否导出欧拉求和公式:
\[\sum_{a\le k<b} f(k)=\int_a^bf(x)\mathrm{d}x+\sum_{k=1}^m\left .\frac {B_k}{k!}f^{(k-1)}(x)\right|^b_a-(-1)^m\int_a^b\frac{B_m(\{x\})}{m!}f^{(m)}(x)\mathrm{d}x \]其中 \(B_k\) 为伯努利数,\(B_m(x)\) 为伯努利恒等式,定义为 \(\displaystyle B_m(x)=\sum_k\binom{m}{k}B_kx^{m-k}\) .
答案是肯定的,推导并不难,只是比较考验耐心而已(实际上这个推导用了大约 10 张草稿纸才搞出来)
依照当时的方法,首先对 \(\displaystyle\int_a^bB_m(\{x\})f^{(m)}(x)\mathrm{d}x\) 进行处理:
\[\begin{aligned} \displaystyle\int_a^bB_m(\{x\})f^{(m)}(x)\mathrm{d}x=\displaystyle\int_a^bB_m(x-\lfloor x\rfloor)f^{(m)}(x)\mathrm{d}x \end{aligned}\]然后考虑 \(B_m(x-y)\) 的化简:
\[\begin{aligned} B_m(x-y)&=\sum_k\binom{m}{k}B_k(x-y)^{m-k}\\ &=\sum_k\binom{m}{k}B_k\sum_j\binom{m-k}{j}(-y)^jx^{m-k-j}\\ &=\sum_k\binom{m-j}{m-k-j}B_k\sum_j\binom{m}{j}(-y)^jx^{m-k-j}\\ &=\sum_j\binom{m}{j}(-y)^j\sum_k\binom{m-j}{m-k-j}B_kx^{m-k-j}\\ &=\sum_j\binom{m}{j}(-y)^jB_{m-j}(x)=\sum_j\binom{m}{j}(-y)^{m-j}B_{j}(x) \end{aligned}\]然后代回式子:
\[\begin{aligned} &\int_a^bB_m(x-\lfloor x\rfloor)f^{(m)}(x)\mathrm{d}x\\ &=\int_a^b\sum_k\binom{m}{k}(-\lfloor x\rfloor)^{m-k}B_{k}(x)f^{(m)}(x)\mathrm{d}x\\ &=\sum_k\binom{m}{k}(-1)^{m-k}\int_a^b\lfloor x\rfloor^{m-k}B_{k}(x)f^{(m)}(x)\mathrm{d}x\\ \end{aligned}\]接下来对后边的 \(\displaystyle\int_a^b\lfloor x\rfloor^{m-k}B_{k}(x)f^{(m)}(x)\mathrm{d}x\) 这一坨东西用当时分段的方法进行化简:
\[\begin{aligned} &\displaystyle\int_a^b\lfloor x\rfloor^{m-k}B_{k}(x)f^{(m)}(x)\mathrm{d}x\\ &=\sum_{i=a}^{b-1}i^{m-k}\int_i^{i+1}B_{k}(x)f^{(m)}(x)\mathrm{d}x \end{aligned}\]然后就是对于 \(\displaystyle\int_i^{i+1}B_{k}(x)f^{(m)}(x)\) 不断进行分部积分:
\[\begin{aligned} \int_a^bB_{k}(x)f^{(m)}(x)&=\left.B_k(x)f^{(m-1)}(x)\right|_a^b-\int_a^bB_{k}'(x)f^{(m-1)}(x)\\ &=\left.B_k(x)f^{(m-1)}(x)\right|_a^b-\left(\left.B_{k}'(x)f^{(m-1)}(x)\right|_a^b-\int_a^bB_{k}'(x)f^{(m-2)}(x)\right)\\ &\vdots\\ &=\sum_{j=0}^{k}\left.(-1)^{j}B_{k}^{(j)}(x)f^{(m-j-1)}(x)\right|_a^b \end{aligned}\]上边的式子为了方便令 \(f^{(-1)}(x)\) 为 \(f(x)\) 的原函数 .
直觉上来看 \(B_{k}^{(j)}(x)\) 有好性质:
\[\begin{aligned} B_{m}^{(n)}(x)&=\sum_{k}\binom{m}{k}B_k(x^{m-k})^{(n)}\\ &=\sum_{k}\binom{m}{k}B_kx^{m-k-n}(m-k)^{\underline{n}}\\ &=n!\sum_{k}\binom{m}{k}B_kx^{m-k-n}\binom{m-k}{n}\\ &=n!\binom{m}{n}\sum_{k}\binom{m-n}{m-k-n}B_kx^{m-k-n}\\ &=m^{\underline{n}}\sum_{k}\binom{m-n}{k}B_kx^{m-k-n}\\ &=m^{\underline{n}}B_{m-n}(x)\\ \end{aligned}\]是时候把所有式子都展开合并了:
\[\begin{aligned} &\sum_k\binom{m}{k}(-1)^{m-k}\int_a^b\lfloor x\rfloor^{m-k}B_{k}(x)f^{(m)}(x)\mathrm{d}x\\ &=\sum_k\binom{m}{k}(-1)^{m-k}\sum_{i=a}^{b-1}i^{m-k}\int_i^{i+1}B_{k}(x)f^{(m)}(x)\mathrm{d}x\\ &=\sum_k\binom{m}{k}(-1)^{m-k}\sum_{i=a}^{b-1}i^{m-k}\sum_{j=0}^{k}\left.(-1)^{j}B_{k}^{(j)}(x)f^{(m-j-1)}(x)\right|_i^{i+1}\\ &=\sum_k\binom{m}{k}(-1)^{m-k}\sum_{i=a}^{b-1}i^{m-k}\sum_{j=0}^{k}\left.(-1)^{j}k^{\underline{j}}B_{k-j}(x)f^{(m-j-1)}(x)\right|_i^{i+1}\\ &=\sum_{i=a}^{b-1}\left[ \sum_k\binom{m}{k}(-i)^{m-k}\sum_{j=0}^{k}(-1)^{j}k^{\underline{j}}B_{k-j}(x)f^{(m-j-1)}(x) \right] _i^{i+1}\\ \end{aligned}\]对中括号里面的东西搞一搞:
\[\begin{aligned} &\sum_k\binom{m}{k}(-i)^{m-k}\sum_{j=0}^{k}(-1)^{j}k^{\underline{j}}B_{k-j}(x)f^{(m-j-1)}(x)\\ &=\sum_k\binom{m}{k}(-i)^{m-k}\sum_{j= 0}^k(-1)^{m-j}k^{\underline{m-j}}B_{k-(m-j)}(x)f^{(j-1)}(x)\\ &=\sum_{j=0}^m(-1)^{m-j}f^{(j-1)}(x)\sum_k\binom{m}{k}(-i)^{m-k}k^{\underline{m-j}}B_{k-(m-j)}(x)\\ \end{aligned}\]把 \(\sum\limits_k\) 里的东西提出来化简一下:
\[\begin{aligned} &\sum_k\binom{m}{k}(-i)^{m-k}k^{\underline{m-j}}B_{k-(m-j)}(x)\\ &=(m-j)!\sum_k\binom{m}{k}\binom{k}{m-j}(-i)^{m-k}B_{k-(m-j)}(x)\\ &=m^{\underline{m-j}}\sum_k\binom{m-(m-j)}{k-(m-j)}(-i)^{m-k}B_{k-(m-j)}(x)\\ &=m^{\underline{m-j}}\sum_k\binom{j}{j-(m-k)}(-i)^{m-k}B_{j-(m-k)}(x)\\ &=m^{\underline{m-j}}\sum_k\binom{j}{j-k}(-i)^{k}B_{j-k}(x)\\ \end{aligned}\]观察到和式内的东西和 \(B_m(x-y)\) 的形式一样,所以最后就是:
\[m^{\underline{m-j}}B_j(x-i) \]然后回代:
\[\begin{aligned} &\sum_{i=a}^{b-1}\left[ \sum_k\binom{m}{k}(-i)^{m-k}\sum_{j=0}^{k}(-1)^{j}k^{\underline{j}}B_{k-j}(x)f^{(m-j-1)}(x) \right] _i^{i+1}\\ &=\sum_{i=a}^{b-1}\left[ \sum_{j= 0}^m(-1)^{m-j}f^{(j-1)}(x)m^{\underline{m-j}}B_{j}(x-i)\right] _i^{i+1}\\ &=\sum_{j=0}^m(-1)^{m-j}m^{\underline{m-j}}\sum_{i=a}^{b-1}\left[ f^{(j-1)}(x)B_{j}(x-i)\right] _i^{i+1}\\ &=m!\sum_{j=0}^m(-1)^{m-j}\frac{1}{j!}\sum_{i=a}^{b-1}\left( f^{(j-1)}(i+1)B_{j}(1)-f^{(j-1)}(i)B_{j}(0)\right)\\ \end{aligned}\]\(B_j(0)=B_j\) 是显然的,然后观察 \(B_j(1)\):
\[B_j(1)=\sum_{t}\binom{j}{t}B_t=\sum_{t\le j-1}\binom{j}{t}B_t+B_j=[j-1=0]+B_j \]然后分析 \(\displaystyle\sum_{i=a}^{b-1}\left( f^{(j-1)}(i+1)B_{j}(1)-f^{(j-1)}(i)B_{j}(0)\right)\):
- \(j=1\)\[\begin{aligned} &\sum_{i=a}^{b-1}\left( f(i+1)B_{1}(1)-f(i)B_{1}(0)\right)\\ &=\sum_{i=a}^{b-1}\left( f(i+1)B_1-f(i)B_{1}\right)+\sum_{i=a+1}^bf(i)\\ &=B_1(f(b)-f(a))+\sum_{i=a+1}^bf(i)=\left.B_1f(x)\right|_a^b+\sum_{i=a+1}^bf(i) \end{aligned}\]
- \(j\not=1\)\[\begin{aligned} &\sum_{i=a}^{b-1}\left( f^{(j-1)}(i+1)B_{j}(1)-f^{(j-1)}(i)B_{j}(0)\right)\\ &=\sum_{i=a}^{b-1}\left( f^{(j-1)}(i+1)B_j-f(i)^{(j-1)}B_{j}\right)\\ &=B_j(f^{(j-1)}(b)-f^{(j-1)}(a))=\left.B_jf^{(j-1)}(x)\right|_a^b \end{aligned}\]
将分析结果代入:
\[\begin{aligned} &m!\sum_{j=0}^m(-1)^{m-j}\frac{1}{j!}\sum_{i=a}^{b-1}\left( f^{(j-1)}(i+1)B_{j}(1)-f^{(j-1)}(i)B_{j}(0)\right)\\ &=m!\sum_{j=0}^m(-1)^{m-j}\frac{1}{j!}\left.B_jf^{(j-1)}(x)\right|_a^b+m!(-1)^{m-1}\sum_{i=a+1}^bf(i)\\ &=m!\sum_{j=1}^m(-1)^{m-j}\frac{1}{j!}\left.B_jf^{(j-1)}(x)\right|_a^b+m!(-1)^{m-1}\sum_{i=a+1}^bf(i)+m!(-1)^m\int_a^bf(x)\mathrm{d}x\\ \end{aligned}\]现在可以加上最一开始的左式了:
\[\begin{aligned} \int_a^bB_m(\{x\})f^{(m)}(x)\mathrm{d}x&=m!\sum_{j=1}^m(-1)^{m-j}\frac{1}{j!}\left.B_jf^{(j-1)}(x)\right|_a^b+m!(-1)^{m-1}\sum_{i=a+1}^bf(i)+m!(-1)^m\int_a^bf(x)\mathrm{d}x\\ (-1)^m\int_a^b\frac{B_m(\{x\})}{m!}f^{(m)}(x)\mathrm{d}x&=\sum_{j=1}^m(-1)^{j}\frac{1}{j!}\left.B_jf^{(j-1)}(x)\right|_a^b-\sum_{i=a+1}^bf(i)+\int_a^bf(x)\mathrm{d}x\\ \sum_{i=a+1}^bf(i)&=\sum_{j=1}^m(-1)^{j}\frac{1}{j!}\left.B_jf^{(j-1)}(x)\right|_a^b+\int_a^bf(x)\mathrm{d}x-(-1)^m\int_a^b\frac{B_m(\{x\})}{m!}f^{(m)}(x)\mathrm{d}x\\ \sum_{a<k\le b}f(k)&=\int_a^bf(x)\mathrm{d}x+\left.\sum_{k=1}^m(-1)^{k}\frac{B_k}{k!}f^{(k-1)}(x)\right|_a^b-(-1)^m\int_a^b\frac{B_m(\{x\})}{m!}f^{(m)}(x)\mathrm{d}x\\ \end{aligned}\]这几乎就是欧拉求和公式了,只不过这是左开右闭的形式,接下来只需要说明 \(\displaystyle\left.\sum_{k=1}^m\frac{B_k}{k!}f^{(k-1)}(x)\right|_a^b-\left.\sum_{k=1}^m(-1)^{k}\frac{B_k}{k!}f^{(k-1)}(x)\right|_a^b=f(b)-f(a)\) 即可,这是容易证明的,因为对于 \(>1\) 的奇数 \(k\),\(B_k=0\) .
我们最后加上 \(\displaystyle\left.\sum_{k=1}^m\frac{B_k}{k!}f^{(k-1)}(x)\right|_a^b-\left.\sum_{k=1}^m(-1)^{k}\frac{B_k}{k!}f^{(k-1)}(x)\right|_a^b=f(b)-f(a)\) 就可以完结撒花了:
\[\sum_{a\le k< b}f(k)=\int_a^bf(x)\mathrm{d}x+\left.\sum_{k=1}^m\frac{B_k}{k!}f^{(k-1)}(x)\right|_a^b-(-1)^m\int_a^b\frac{B_m(\{x\})}{m!}f^{(m)}(x)\mathrm{d}x \]用了这么长篇幅推导,似乎应用也是不必要的了,借鉴了 9.6 闲话(指就涉及了第一步),9.6 闲话借鉴了知乎专栏,所以或许算独立推导?
真的有人会看完完整推导过程吗?大概大多只是快速划到最底下还不点赞罢 .
标签:right,int,闲话,sum,9.9,binom,aligned,left From: https://www.cnblogs.com/Rolling-star/p/17688851.html