首页 > 其他分享 >tensorrt学习(三)

tensorrt学习(三)

时间:2023-09-02 16:44:34浏览次数:47  
标签:std return float tensorrt 学习 dims input data

继续整理tensorrt的学习资料,方便后续查看. (文章内容大部分摘取于网络资源)

1 int8量化

int8量化就是将网络的权重由float32类型缩放为int8类型,同时记录缩放的scale。为了尽可能的不丢失精度,需要采用标定图片来确定缩放的范围。

1.1 int8量化原理

标定过程

  • 标定的原理,是通过输入标定图像I,使用参数W(Int8)推理得到输出结果P(Int8),然后不断调整W(Int8),使得输出P(Int8)与原始参数w(float32)输出结果P(Float32)越接近越好
  • 因此标定时通常需要使用一些图像,正常发布时,一般使用100张图左右即可

int8 加速原因

计算机中的float计算量是非常大的,而改成int8后,计算量相比可以提升数倍

  • 对于实际操作时,input[float32], w[int8], bias[float32], output[float32] (w[int8], bias[float32]为量化后的网络权重)
  • 步骤如下:
    • input[int8] = to_int8(input[float32])
    • y[int16] = input[int8] * w[int8] # 此处乘法会由计算机转换为int16,保证精度
    • output[float32] = to_float32(y[int16]) + bias[float32]
  • 所以整个过程的只是为了减少float32的乘法数量以实现提速
  • 对于to_int8的过程,并不是直接的线性缩放,而是经过KL散度计算最合适的截断点(最大、最小值),进而进行缩放,使 布尽可能小的被改变
  • 可以参照这个地址:https://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf

1.2 int8量化实现

tensorrt中实现int8量化,是在build模型时完成,主要包括两步:

    1. 继承和实现一个Calibrator, 用来读取标定图片,选取合适的范围将float32权重转变为int8权重。常用的Calibrator包括下面两类:
    • Int8EntropyCalibrator2
      熵校准选择张量的比例因子来优化量化张量的信息论内容,通常会抑制分布中的异常值。这是当前推荐的熵校准器。默认情况下,校准发生在图层融合之前。推荐用于基于 CNN 的网络。

      .jpg)
    • Iint8MinMaxCalibrator
      该校准器使用激活分布的整个范围来确定比例因子。它似乎更适合NLP任务。默认情况下,校准发生在图层融合之前。推荐用于NVIDIA BERT等网络。
    1. build时config->setFlag()需要配置nvinfer1::BuilderFlag::kINT8,并且配置config->setInt8Calibrator

      config->setFlag(nvinfer1::BuilderFlag::kINT8);
      shared_ptr<Int8EntropyCalibrator> calib(new Int8EntropyCalibrator({"kej.jpg"}, input_dims, preprocess));
      config->setInt8Calibrator(calib.get());
      

下面是采用Int8EntropyCalibrator2量化resnet50的示例代码:

#include <NvInfer.h>
#include <NvOnnxParser.h>
#include <NvInferRuntime.h>
#include <cuda_runtime.h>

#include <iostream>
#include <stdio.h>
#include <memory>
#include <functional>
#include <vector>
#include <cassert>
#include <Shlwapi.h>
#include <fstream>
#include <opencv2/opencv.hpp>

#define checkRuntime(op)  __check_cuda_runtime((op), #op, __FILE__, __LINE__)

bool __check_cuda_runtime(cudaError_t code, const char* op, const char* file, int line) {
	if (code != cudaSuccess) {
		const char* err_name = cudaGetErrorName(code);
		const char* err_message = cudaGetErrorString(code);
		printf("runtime error %s:%d  %s failed. \n  code = %s, message = %s\n", file, line, op, err_name, err_message);
		return false;
	}
	return true;
}

inline const char* severity_string(nvinfer1::ILogger::Severity t) {
	switch (t) {
	case nvinfer1::ILogger::Severity::kINTERNAL_ERROR: return "internal_error";
	case nvinfer1::ILogger::Severity::kERROR:   return "error";
	case nvinfer1::ILogger::Severity::kWARNING: return "warning";
	case nvinfer1::ILogger::Severity::kINFO:    return "info";
	case nvinfer1::ILogger::Severity::kVERBOSE: return "verbose";
	default: return "unknow";
	}
}

class TRTLogger : public nvinfer1::ILogger {
public:
	virtual void log(Severity severity, nvinfer1::AsciiChar const* msg) noexcept override {
		if (severity <= Severity::kINFO) {
			// 打印带颜色的字符,格式如下:
			// printf("\033[47;33m打印的文本\033[0m");
			// 其中 \033[ 是起始标记
			//      47    是背景颜色
			//      ;     分隔符
			//      33    文字颜色
			//      m     开始标记结束
			//      \033[0m 是终止标记
			// 其中背景颜色或者文字颜色可不写
			// 部分颜色代码 https://blog.csdn.net/ericbar/article/details/79652086
			if (severity == Severity::kWARNING) {
				printf("\033[33m%s: %s\033[0m\n", severity_string(severity), msg);
			}
			else if (severity <= Severity::kERROR) {
				printf("\033[31m%s: %s\033[0m\n", severity_string(severity), msg);
			}
			else {
				printf("%s: %s\n", severity_string(severity), msg);
			}
		}
	}
};

typedef std::function<void(
	int current,  int count, const std::vector<std::string>& files, nvinfer1::Dims dims, float* ptensor
)> Int8Process;


// int8熵校准器:用于评估量化前后的分布改变
class Int8EntropyCalibrator :public nvinfer1::IInt8EntropyCalibrator2 {
public:
	Int8EntropyCalibrator(const std::vector<std::string>& imagefiles, nvinfer1::Dims dims, const Int8Process& preprocess)
	{
		assert(preprocess != nullptr);
		this->dims_ = dims;
		this->allimgs_ = imagefiles;
		this->preprocess_ = preprocess;
		this->fromCalibratorData_ = false;
		files_.resize(dims.d[0]);  //dims.d[0]对应batch_size
	}
	// 这个构造函数,是允许从缓存数据中加载标定结果,这样不用重新读取图像处理
	Int8EntropyCalibrator(const std::vector<uint8_t>& entropyCalibratorData, nvinfer1::Dims dims, const Int8Process& preprocess)
	{
		assert(preprocess != nullptr);
		this->dims_ = dims;
		this->entropyCalibratorData_ = entropyCalibratorData;
		this->preprocess_ = preprocess;
		this->fromCalibratorData_ = false;
		files_.resize(dims.d[0]);
	}

	virtual ~Int8EntropyCalibrator()
	{
		if (tensor_host_ != nullptr) {
			checkRuntime(cudaFreeHost(tensor_host_));
			checkRuntime(cudaFree(tensor_device_));
			tensor_host_ = nullptr;
			tensor_device_ = nullptr;
		}
	}

	// 想要按照多少的batch进行标定
	int getBatchSize() const noexcept {
		return dims_.d[0];
	}

	bool next() {
		int batch_size = dims_.d[0];
		if (cursor_ + batch_size > allimgs_.size()) {
			return false;
		}
		for (int i = 0; i < batch_size; ++i) {
			files_[i] = allimgs_[cursor_++];
		}
		if (tensor_host_ == nullptr) {
			size_t volume = 1;
			for (int j = 0; j < dims_.nbDims; ++j) {
				volume *= dims_.d[j];
			}
			bytes_ = volume * sizeof(float);
			checkRuntime(cudaMallocHost(&tensor_host_, bytes_));
			checkRuntime(cudaMalloc(&tensor_device_, bytes_));
		}
		preprocess_(cursor_, allimgs_.size(), files_, dims_, tensor_host_);
		checkRuntime(cudaMemcpy(tensor_device_, tensor_host_, bytes_, cudaMemcpyHostToDevice));

		return true;
	}

	bool getBatch(void* bindings[], const char* names[], int nBindings) noexcept{
		if (!next()) return false;
		bindings[0] = tensor_device_;
		return true;
	}

	const std::vector<uint8_t>& getEntropyCalibratorData() {
		return entropyCalibratorData_;
	}

	const void* readCalibrationCache(size_t& length) noexcept {
		if (fromCalibratorData_) {
			length = this->entropyCalibratorData_.size();
			return this->entropyCalibratorData_.data();
		}
		return nullptr;
	}
	virtual void writeCalibrationCache(const void* cache, size_t length) noexcept{
		entropyCalibratorData_.assign((uint8_t*)cache, (uint8_t*)cache + length);
	}

private:
	Int8Process preprocess_;
	std::vector<std::string> allimgs_;
	size_t batchCudaSize_ = 0;
	int cursor_ = 0;
	size_t bytes_ = 0;
	nvinfer1::Dims dims_;
	std::vector<std::string> files_;
	float* tensor_host_ = nullptr;
	float* tensor_device_ = nullptr;
	std::vector<uint8_t> entropyCalibratorData_;
	bool fromCalibratorData_ = false;
};

// 通过智能指针管理nv返回的指针参数
// 内存自动释放,避免泄漏
template<typename _T>
static std::shared_ptr<_T> make_nvshared(_T* ptr) {
	return std::shared_ptr<_T>(ptr, [](_T* p) {p->destroy(); });
}

static bool exists(const std::string& path) {
#ifdef _WIN32
	return ::PathFileExistsA(path.c_str());  // <Shlwapi.h>头文件中
#else
	return access(path.c_str(), R_OK) == 0;
#endif // !_WIN32
}

bool build_model() {
	//if (exists("resnet18_classifier.trtmodel")) {
		//printf("resnet18_classifier.trtmodel has exists.\n");
		//return true;
	//}

	TRTLogger logger;
	auto builder = make_nvshared(nvinfer1::createInferBuilder(logger));
	auto config = make_nvshared(builder->createBuilderConfig());

	// createNetworkV2(1)表示采用显性batch size,新版tensorRT(>=7.0)时,不建议采用0非显性batch size
	// 因此贯穿以后,请都采用createNetworkV2(1)而非createNetworkV2(0)或者createNetwork
	auto network = make_nvshared(builder->createNetworkV2(1));

	auto parser = make_nvshared(nvonnxparser::createParser(*network, logger));
	if (!parser->parseFromFile("resnet18_classifier.onnx", 1)) {
		printf("parse onnx file failed\n");
		return false;
	}

	int maxBatchSize = 10;
	printf("Workspace Size = %.2f MB\n", (1 << 28) / 1024.0f / 1024.0f);
	config->setMaxWorkspaceSize(1 << 28);
	auto profile = builder->createOptimizationProfile();
	auto input_tensor = network->getInput(0);
	auto input_dims = input_tensor->getDimensions();
	input_dims.d[0] = 1;
	
	// 设置int8量化
	config->setFlag(nvinfer1::BuilderFlag::kINT8);
	auto preprocess = [](
		int current, int count, const std::vector<std::string>& files,
		nvinfer1::Dims dims, float* ptensor
	){
		printf("Preprocess %d / %d\n", count, current);

		// 标定所采用的数据预处理必须与推理时一样
		int width = dims.d[3];
		int height = dims.d[2];
		float mean[] = { 0.406, 0.456, 0.485 };
		float std[] = { 0.225, 0.224, 0.229 };
		for (int i = 0; i < files.size(); ++i) {
			auto image = cv::imread(files[i]);
			cv::resize(image, image, cv::Size(width, height));
			int image_area = width * height;
			unsigned char* pimage = image.data;
			float* phost_b = ptensor + image_area * 0;
			float* phost_g = ptensor + image_area * 1;
			float* phost_r = ptensor + image_area * 2;
			for (int j = 0; j < image_area; ++j, pimage += 3) {
				// 注意这里的顺序rgb调换了
				*phost_r++ = (pimage[0] / 255.0 - mean[0]) / std[0];
				*phost_g++ = (pimage[1] / 255.0 - mean[1]) / std[1];
				*phost_b++ = (pimage[2] / 255.0 - mean[2]) / std[2];
			}
			ptensor += image_area * 3;
		}
	};
	// 配置int8标定数据读取工具
	std::shared_ptr<Int8EntropyCalibrator> calibrator(
		new Int8EntropyCalibrator({ "kej.jpg" }, input_dims, preprocess)
	);
	config->setInt8Calibrator(calibrator.get());


	// 配置最小允许batch
	input_dims.d[0] = 1;
	profile->setDimensions(input_tensor->getName(), nvinfer1::OptProfileSelector::kMIN, input_dims);
	profile->setDimensions(input_tensor->getName(), nvinfer1::OptProfileSelector::kOPT, input_dims);
	// 配置最大允许batch
	// if networkDims.d[i] != -1, then minDims.d[i] == optDims.d[i] == maxDims.d[i] == networkDims.d[i]
	input_dims.d[0] = maxBatchSize;
	profile->setDimensions(input_tensor->getName(), nvinfer1::OptProfileSelector::kMAX, input_dims);
	config->addOptimizationProfile(profile);

	auto engine = make_nvshared(builder->buildEngineWithConfig(*network, *config));
	if (engine == nullptr) {
		printf("build engine falied\n");
		return false;
	}

	auto model_data = make_nvshared(engine->serialize());
	FILE* f = fopen("resnet18_classifier.trtmodel", "wb");
	fwrite(model_data->data(), 1, model_data->size(), f);
	fclose(f);

	f = fopen("calib.txt", "wb");
	auto calib_data = calibrator->getEntropyCalibratorData();
	fwrite(calib_data.data(), 1, calib_data.size(), f);
	fclose(f);

	printf("Done\n");
	return true;
}

std::vector<unsigned char> load_file(const std::string& file) {
	std::ifstream in(file, std::ios::in | std::ios::binary);
	if (!in.is_open()) {
		return {};
	}
	in.seekg(0, std::ios::end);
	size_t length = in.tellg();
	std::vector<unsigned char> result;
	if (length > 0) {
		result.resize(length);
		in.seekg(0, std::ios::beg);
		in.read((char*)result.data(), length);
	}
	in.close();
	return result;
}

std::vector<std::string> load_labels(const char* file) {
	std::vector<std::string> lines;
	std::ifstream in(file, std::ios::in | std::ios::binary);
	if (!in.is_open()) {
		printf("open %d failed.\n", file);
		return lines;
	}
	std::string line;
	while (std::getline(in, line)) {
		lines.push_back(line);
	}
	in.close();
	return lines;
}

void inference() {
	TRTLogger logger;
	auto runtime = make_nvshared(nvinfer1::createInferRuntime(logger));
	auto model_data = load_file("resnet18_classifier.trtmodel");
	auto engine = make_nvshared(runtime->deserializeCudaEngine(model_data.data(), model_data.size()));
	if (engine == nullptr) {
		printf("Deserialize cuda engine failed.\n");
		return;
	}
	auto context = make_nvshared(engine->createExecutionContext());

	cudaStream_t stream = nullptr;
	checkRuntime(cudaStreamCreate(&stream));

	int input_batch = 1;
	int input_channel = 3;
	int input_height = 224;
	int input_width = 224;
	int input_numel = input_batch * input_channel * input_height * input_width;
	float* input_data_host = nullptr;
	float* input_data_device = nullptr;
	checkRuntime(cudaMallocHost(&input_data_host, input_numel * sizeof(float)));
	checkRuntime(cudaMalloc(&input_data_device, input_numel * sizeof(float)));

	// image to float
	auto image = cv::imread("kej.jpg");
	float mean[] = { 0.406, 0.456, 0.485 };
	float std[] = { 0.225, 0.224, 0.229 };
	cv::resize(image, image, cv::Size(input_width, input_height));
	int image_area = image.cols * image.rows;
	unsigned char* pimage = image.data;
	float* phost_b = input_data_host + image_area * 0;
	float* phost_g = input_data_host + image_area * 1;
	float* phost_r = input_data_host + image_area * 2;
	for (int i = 0; i < image_area; ++i, pimage += 3) {
		// 注意这里的顺序rgb调换了
		*phost_r++ = (pimage[0] / 255.0f - mean[0]) / std[0];
		*phost_g++ = (pimage[1] / 255.0f - mean[1]) / std[1];
		*phost_b++ = (pimage[2] / 255.0f - mean[2]) / std[2];
	}
	checkRuntime(cudaMemcpyAsync(input_data_device, input_data_host, input_numel * sizeof(float),
		cudaMemcpyHostToDevice, stream));

	// 3x3输入,对应3x3输出
	const int num_classes = 1000;
	float output_data_host[num_classes];
	float* output_data_device = nullptr;
	checkRuntime(cudaMalloc(&output_data_device, sizeof(output_data_host)));

	// 明确当前推理时,使用的数据输入大小
	auto input_dims = context->getBindingDimensions(0);
	input_dims.d[0] = input_batch;
	context->setBindingDimensions(0, input_dims);
	float* bindings[] = { input_data_device, output_data_device };
	bool success = context->enqueueV2((void**)bindings, stream, nullptr);
	checkRuntime(cudaMemcpyAsync(output_data_host, output_data_device, sizeof(output_data_host),
		cudaMemcpyDeviceToHost, stream));
	checkRuntime(cudaStreamSynchronize(stream));

	float* prob = output_data_host;
	int predict_label = std::max_element(prob, prob + num_classes) - prob;
	auto labels = load_labels("labels.imagenet.txt");
	auto predict_name = labels[predict_label];
	float confidence = prob[predict_label];
	printf("Predict: %s, confidence = %f, label = %d\n", predict_name.c_str(), confidence, predict_label);

	checkRuntime(cudaStreamDestroy(stream));
	checkRuntime(cudaFreeHost(input_data_host));
	checkRuntime(cudaFree(input_data_device));
	checkRuntime(cudaFree(output_data_device));
}

int main() {
	if (!build_model()) {
		std::cin.get();
		return -1;
	}
	inference();
	std::cin.get();
	return 0;
}

 

标签:std,return,float,tensorrt,学习,dims,input,data
From: https://www.cnblogs.com/silence-cho/p/17673870.html

相关文章

  • tensorrt学习(一)
    整理下tensorrt学习资料,方便后续查找。(文章内容大部分摘取于网络资源)1.tensorrt介绍安装:https://docs.nvidia.com/deeplearning/sdk/tensorrt-install-guide/index.htmltensorrtpython文档:https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/index.htmltenso......
  • Python初级学习20230902——字符串
    字符串"""example05-字符串1.转义问题2.字符编码Author:danlisDate:2023/9/2"""a='hello,world'#和a一样的b="hello,world"#一般长字符串,用三个单引号。三个双引号一般作为注释c='''hello,world'''#......
  • 超越平滑: 具有边异质判别的无监督图表示学习
    超越平滑:具有边异质判别的无监督图表示学习Title:BeyondSmoothing:UnsupervisedGraphRepresentationLearning&nbspwithEdgeHeterophilyDiscriminatingCite:Liu,Y.,Zheng,Y.,Zhang,D.,Lee,V.C.,&Pan,S.(2023).BeyondSmoothing:UnsupervisedGraphRe......
  • [学习笔记] 莫队
    一、普通莫队莫队是一种基于分块的算法,由莫队提出(orz)。莫队可以解决一类查询序列区间信息的题。可以使用该算法的前提是维护的信息必须可以在\(O(1)\)(如果用map/set可以带\(\log\),或者优化成\(O(1)\))内将\([l,r]\)的答案扩展到\([l-1,r],[l+1,r],[l,r-......
  • 虚拟机VMware与乌班图的安装 -- 正点原子嵌入式Linux学习
    一、准备工作1、虚拟机VMware的下载官网下载地址:DownloadVMwareWorkstationPro2、linux乌班图的下载官网下载地址:下载Ubuntu桌面系统|Ubuntu二、虚拟机VMware的安装过程1、点击第一步下载好的虚拟机安装文件,选择自定义,后点击下一步2、点击稍后安装3、选择Linux......
  • Python初级学习20230902——元组
    """example04-初步学习Python1.学习元组tuple2.元组的应用Author:danlisDate:2023/9/2"""#START1学习元组tuple#元组是不可变的容器*#str=(100)#这实际上class'int',所以如果需要构造一元组,必须后面加,str=(100,)str1=(100,)print(type(str1))#重复......
  • Python初级学习20230901
    Python初级学习20230901运算符--->优先级和结合性左结合:从左往右进行计算(大部分运算符)右结合:从右往左进行计算(赋值运算符,正负号,索引和切片)assert断言语句a=1asserta==1#后面可以不加asserta==1,'这里写的是如果出错时的提示语句,AssertionError:内容'容器型数......
  • 8.28-9.3学习总结博客八:数据工程与系统部署
    博客题目:学习总结八:数据工程与系统部署实践内容概要:了解数据工程的基本概念和核心技术,学习如何将学到的技能应用于实际项目中,并了解数据处理系统的设计和部署。学习资源:推荐的数据工程、系统部署和项目实践的教程、实践资源和学习资料。实践内容:通过针对实际项目的数据处理和系统......
  • 『学习笔记』狄利克雷生成函数
    定义一般地,对于一个函数\(f\),定义它的狄利克雷生成函数(简写为DGF)为:\[\tilde{F}(x)=\sum_{i\ge1}^\infty\dfrac{f_i}{i^x}.\]即:\[\tilde{F}(x)=f_1+\dfrac{f_2}{i^2}+\dfrac{f_3}{i^3}+\dfrac{f_4}{i^4}+\cdots.①\]性质若\(f\)是积性函数,则一定满足:......
  • 前端学习笔记202308学习笔记第七十捌天-Map之8
    <!DOCTYPEhtml><htmllang="en"><head><metacharset="UTF-8"><metaname="viewport"content="width=device-width,initial-scale=1.0"><title>Map</title></hea......