首页 > 其他分享 >树状数组进阶

树状数组进阶

时间:2023-08-26 10:22:19浏览次数:52  
标签:二分 进阶 树状 int leq 数组 前缀

出去集训讲了一些有关树状数组的 NB 东西,然后模拟赛考了一个二维树状数组的板子,自己差点没推出来柿子,所以简单写写。

参考博客: 《树状数组进阶》-Alex_wei

树状数组二分

树状数组二分,本质上其实应该是树状数组倍增,它是基于倍增的思想实现的。

算法流程

树状数组二分解决的问题是找到一个分割点 \(q\),使得 \(\leq q\) 的位置满足某个限制,而 \(>q\) 的位置不满足。并且需要注意的一点是,树状数组二分是要在整个序列上二分,而并非每个序列都可以。

而这个限制,在题中出现最多的就是找到一个位置 \(q\),使得 \(\leq q\) 的前缀和都要 \(\leq v\),而 \(>q\) 的位置的前缀和都要 \(>v\)。

因为树状数组中的一个位置 \(i\),存储的是 \(\displaystyle i-\text{lowbit}(i)+1 \sim i\) 的值,因为这个天然性质,使得我们可以进行这个操作。

我们设当前位置是 \(p\),前缀和是 \(s\),我们从大到小枚举 \(1\leq 2^k \leq n\),尝试将 \(p\) 加上 \(2^k\),即判断 \(\displaystyle s + \sum_{i=p+1}^{p+2^k}a_i\leq v\) 是否成立。

这样对的原因是我们是从大到小枚举的 \(k\),所以 \(\text{lowbit}(p+2^k) = 2^k\),因此这个式子是正确的。那么如果 \(\displaystyle s + \sum_{i=p+1}^{p+2^k}a_i\leq v\) 成立,我们就令 \(\displaystyle p\leftarrow p+2^k,s = s+\sum_{i=p+1}^{p+2^k}a_i\),一直往下找就行了。

因为这个 \(\displaystyle \sum\) 里面的东西刚好就是树状数组维护的,所以我们就可以在 \(O(\log n)\) 的复杂度内解决这个问题,如果单纯的是二分 + 树状数组(注意不是树状数组上二分),那就是 \(O(\log^2 n)\),显然是不优的。

例题

参考题解:duyi

撅世好题。

我们挖掘一些性质:

    1. 注意到一旦双方出战名单确定,无论出战顺序如何,因为双方耗费的能量一定相同,且至少有一方能量耗尽时才能结束,因此答案是两队能量和最小值的两倍。
    1. 我们设两个函数 \(\displaystyle f_{ice}(k) = \sum_{i\in \text{ice},x_i\leq k}y_i,f_{fire}(k) = \sum_{i\in \text{fire},x_i\ge k}y_i\),我们观察这两个函数的图像,可以注意到,关于冰战士的价值函数是单调不降的,关于火战士的价值函数是单调不升的,具体就如下图所示(图片来自 here)

,然后我们要找的就是它们两条线的 \(\min\) 部分里的最大值,也就是下图

res 部分的那个峰点,但是由于这个函数是定义在整数域上的,所以不连续,所以这样的点可能会有多个,我们就可以拆分成两个问题来做:

  • 找出最大的 \(k\),使得 \(f_{ice}(k) < f_{fire}(k)\)

  • 找出最小的 \(k\),使得 \(f_{ice}(k) \ge f_{fire}(k)\)

然后这两个 \(f\) 我们可以用树状数组维护它们的前缀和,然后在树状数组上二分解决就行了。因为 \(f_{fire}(k)\) 在 res 部分是一个后缀,我们依然可以维护前缀,然后后缀 \(=\) 总和 - 前缀就行了。

但是有一个问题就是树状数组是求了一个前缀和满足 \(\leq\) 的限制,而第二个问题不太好办,怎么解决呢?

具体的,我们先解决第一个问题,找到的位置是 \(p\),然后我们在 \(p+1\) 的位置上解决问题二,如果第一个问题值更大,那么就按问题 \(1\) 输出;否则,我们利用求出来的问题 \(2\) 的值再树状数组二分一次,这样就能保证找到的位置在最前面了。综上,我们最多只需要 \(2\) 次树状数组二分,因为树状数组常数很小,并且理论复杂度是 \(O(n\log n)\),所以可以通过 \(2\text{e}6\)。

code:

#include<bits/stdc++.h>
//#define int long long
#define ll long long
#define next nxt
#define re register
#define il inline
#define lowbit(x) x&(-x)
const int N = 2e6 + 5;
using namespace std;
int max(int x,int y){return x > y ? x : y;}
int min(int x,int y){return x < y ? x : y;}

int n,m,cnt,sumfire;
int b[N];
struct node{
	int op,type;
	int t,v;
}a[N];
struct Node{
	int c[N];
	il void add(int x,int k) { for(;x<=n;x+=lowbit(x)) c[x] += k; }
}treeice,treefire;

il int read()
{
	int f=0,s=0;
	char ch=getchar();
	for(;!isdigit(ch);ch=getchar()) f |= (ch=='-');
	for(; isdigit(ch);ch=getchar()) s = (s<<1) + (s<<3) + (ch^48);
	return f ? -s : s;
}

il int Query(int x)
{
	if(x < 1 || x > m) return 0;
	int ans1 = 0 , ans2 = sumfire;
	for(;x;x-=lowbit(x)) ans1 += treeice.c[x] , ans2 -= treefire.c[x];
	return min(ans1,ans2);
}

signed main()
{
	n = read();
	for(re int i=1;i<=n;i++)
	{
		a[i].op = read();
		if(a[i].op == 1)
		{
			a[i].type = read() , a[i].t = read() , a[i].v = read();
			b[++cnt] = a[i].t;
		}
		else
		{
			int k = read(); a[i] = a[k];
			a[i].op = 2 , a[i].v = -a[i].v;//删去一个就相当于贡献为负
		}
	}
	sort(b+1,b+cnt+1);
	m = unique(b+1,b+cnt+1) - b - 1;
	for(re int i=1;i<=n;i++) a[i].t = lower_bound(b+1,b+m+1,a[i].t) - b;
	for(re int i=1;i<=n;i++)
	{
		if(!a[i].type) treeice.add(a[i].t,a[i].v);
		else treefire.add(a[i].t+1,a[i].v) , sumfire += a[i].v;//你要求的是从该位置起始的一段后缀,而树状数组查询前缀和会把自己算进来,如果在a[i].t位置上加
		int I = 0 , F = 0 , x = 0;//就会导致这个位置本不应该被删去却被删了,所以我们在 a[i].t+1 的位置上加数
		for(re int j=21;j>=0;j--)
		{
			int nx = x | (1<<j);
			if(nx <= m)
			{
				int nI = I + treeice.c[nx] , nF = F + treefire.c[nx];
				if(nI <= sumfire - nF) x = nx , I = nI , F = nF;
			}
		}//树状数组上二分
		int ans1 = Query(x) , x2 = x + 1 , ans2 = Query(x2);
		if(ans1 <= 0 && ans2 <= 0) puts("Peace");
		else if(ans1 > ans2) cout << b[x] << " " << (ans1<<1) << "\n";
		else//第二次树状数组二分
		{
			int F = 0 , x = 0;
			for(re int j=21;j>=0;j--)
			{
				int nx = x | (1<<j);
				if(nx <= m)
				{
					int nF = F + treefire.c[nx];
					if(ans2 <= sumfire - nF) x = nx , F = nF;
				}
			}
			cout << b[x] << " " << ((sumfire-F)<<1) << "\n";
		}
	}
	return 0;
}

二维树状数组

先放一放。

标签:二分,进阶,树状,int,leq,数组,前缀
From: https://www.cnblogs.com/bloodstalk/p/17658430.html

相关文章

  • c 语言 数组(一维)做函数参数
    @TOC前言函数参数:函数参数是函数内外连接的接口,可以互通数据。一、传递一维数组函数调用时,实参是给形参初始化,所以,实参传递什么类型的数据,形参就以什么类型去接住。比如一维数组,如下:函数fun1传递a,因为数组名就是数组的首地址,所以用int*p形参。函数fun2传递&a,是一维数组......
  • java数组、面向对象的引入
    packagecom.momo.demo;publicclassMain{publicstaticvoidmain(String[]args){int[]arr=newint[3];System.out.println(arr);System.out.println(arr[0]);System.out.println(arr[1]);System.out.println(arr[2]);arr[0]=55;arr[2]=66;System.o......
  • NumPy学习挑战第十二关-数组操作
    Numpy数组操作Numpy中包含了一些函数用于处理数组,大概可分为以下几类:1、修改数组形状函数 描述reshape 不改变数据的条件下修改形状flat 数组元素迭代器flatten 返回一份数组拷贝,对拷贝所做的修改不会影响原始数组ravel 返回展开数组(1)numpy.reshapenumpy.reshape函数......
  • 一维数组java练习
    1、打印下列图形*****************************************图形一:publicclassHomeWork8_24{publicstatic......
  • 数组
    1.容器:将多个数据存储到⼀起,每个数据都称为该容器的⼀个元素2.数组:数组就是⽤于存储数据的固定的容器,保证多个数据的数据类型要⼀致3.数组的特点:  1.数组的长度⼀但确定不能修改  2.创建数组时,会在内存中开辟⼀块连续的空间  3.存取元素的速度快,因为可以......
  • JavaScript 去重-对象数组中的重复对象
    先showCodeArray.from(newSet(myArray.map(JSON.stringify)),JSON.parse)myArray是一个对象数组,它是源数据。map(JSON.stringify) 的作用是将每个对象转换为JSON字符串。JSON.stringify 方法将JavaScript对象转换为JSON字符串表示。newSet(...) 创建一个新的S......
  • Leetcode1636——按照频率将数组升序排序
    给你一个整数数组 nums ,请你将数组按照每个值的频率 升序 排序。如果有多个值的频率相同,请你按照数值本身将它们 降序 排序。 请你返回排序后的数组。 示例1:输入:nums=[1,1,2,2,2,3]输出:[3,1,1,2,2,2]解释:'3'频率为1,'1'频率为2,'2'频率为3。示例2:输入:nu......
  • AWC数组显示框aw-widget初始加载时没有把数组显示出来的问题
    1、html<aw-widgetprop="data.aaaa"></aw-widget>2、model.json"aaaa":{"displayName":"aaaa","type":"STRINGARRAY","isRequired":......
  • 二维数组和交错数组
    usingSystem;usingSystem.Collections.Generic;usingSystem.Linq;usingSystem.Text;usingSystem.Threading.Tasks;namespaceConsoleApp1{classProgram{staticvoidMain(string[]args){//交错数组Console.......
  • js判断一个元素是否在数组内
    vararr=newArray("a","ab");//使用jquery方法if($.inArray("a",arr)>-1){alert("在")}//自己写functioncontains(arr,val){vari=arr.length;while(i--){if(arr[i]===val){......