首页 > 其他分享 >CF1830C

CF1830C

时间:2023-08-24 11:37:04浏览次数:36  
标签:相同 线段 leq 权值 CF1830C 我们

原题

翻译

前置知识:\(catalan\)数

首先我们先考虑如果没有线段怎么做

我们容易发现如果\(n\)为奇数肯定无解,如果\(n\)为偶数答案为第\(\frac{n}{2}\)个\(catalan\)数

然后我们考虑如果两个线段相交这里会产生什么影响,即对于线段\([l_1,r_1]\)和\([l_2,r_2]\)满足\(l_1 \leq l_2 \leq r_1 \leq r_2\),我们容易发现其方案数等价与三个线段内的括号序列合法:

  • \([l_1,l_2-1]\)

  • \([l_2,r_1]\)

  • \([r_1+1,r_2]\)

我们考虑如果两个线段重叠会产生什么影响,即对于线段即对于线段\([l_1,r_1]\)和\([l_2,r_2]\)满足\(l_1 \leq l_2 \leq r_2 \leq r_1\),我们容易发现其方案数等价与两个线段内的括号序列合法:

  • \([l_2,r_2]\)

  • \([l_1,l_2-1] \cup [r_2 + 1, r_1]\)

于是我们可以得出结论:设\(S_i\)表示\(i\)位置被\(S_i\)集合内的线段覆盖。则所有\(S_i\)相同的位置可以单独计算贡献,所有方案相乘即为答案

于是我们考虑一些奇技淫巧随机化算法

我们为每一个线段赋一个随机权值\(b_i\),让区间\([l,r]\)内所有位置异或上这个随机权值

则对于\(S_i,S_j\)值不同的两个位置\(i,j\),将以高概率\(a_i,a_j\)不同;相反的,如果\(S_i,S_j\)值相同,高概率\(a_i,a_j\)也相同

因此我们只需要对\(a_i\)离散化后对每一个相同的\(a_i\)单独计算贡献,所有方案相乘即为答案

最终复杂度\(O(nlogn)\),复杂度瓶颈在排序

标签:相同,线段,leq,权值,CF1830C,我们
From: https://www.cnblogs.com/fox-konata/p/17653629.html

相关文章

  • 题解 CF1830C【Hyperregular Bracket Strings】
    卡特兰数一个长为\(2n\)的序列,填入括号,有多少种合法方案?\(C_n=\sum_iC_iC_{n-i-1}\),其中\(C_0=C_1=1\)。它的封闭形式是\(C_n=\binom{2n}{n}-\binom{2n}{n-1}\)。problem给定一个长度\(n\)和\(k\)个子区间\(\{[l1​,r1​],[l2​,r2​],…,[lk​,rk​]\}\)。问有多......