原题链接 过河卒
题目大意
一个 \(n\times n\) 的棋盘,上有一黑二红三子,黑棋每次可以从 \((x,y)\) 移动到 \((x-1,y),(x,y-1),(x,y+1)\),红棋每次可以从 \((x,y)\) 移动到 \((x-1,y),(x+1,y),(x,y-1),(x,y+1)\),求双方都使用最优策略的情况下谁最少要几步获胜。
某一方获胜当且仅当:
- 双方棋子在某次操作前重叠,此时当前要行棋的一方获胜;
- 某一方在他的一轮中不能移动,另一方获胜。
\(1\le n\le 10\)
解题思路
乍一看是一道大模拟,但是确实是注意到