1 #include <opencv2/opencv.hpp> 2 #include <iostream> 3 4 using namespace cv; 5 using namespace std; 6 7 int main(int argc, char** argv) { 8 Mat img(500, 600, CV_8UC3);//定义一张图 9 RNG rng(12345);//定义随机数 10 //不同类定义为不同颜色 11 Scalar colorTab[] = { 12 Scalar(0, 0, 255), 13 Scalar(0, 255, 0), 14 Scalar(255, 0, 0), 15 Scalar(0, 255, 255), 16 Scalar(255, 0, 255) 17 }; 18 19 int numCluster = rng.uniform(2, 5);//定义分类种类数量块 20 printf("number of clusters : %d\n", numCluster); 21 //设置从原图像中抽取多少个数据点 22 int sampleCount = rng.uniform(5, 1000); 23 Mat points(sampleCount, 1, CV_32FC2); 24 Mat labels; 25 Mat centers; 26 27 // 生成随机数 28 for (int k = 0; k < numCluster; k++) { 29 Point center; 30 center.x = rng.uniform(0, img.cols); 31 center.y = rng.uniform(0, img.rows); 32 //得到不同小块 33 Mat pointChunk = points.rowRange(k*sampleCount / numCluster, 34 k == numCluster - 1 ? sampleCount : (k + 1)*sampleCount / numCluster); 35 //用随机数对小块点进行填充 36 rng.fill(pointChunk, RNG::NORMAL, Scalar(center.x, center.y), Scalar(img.cols*0.05, img.rows*0.05)); 37 } 38 randShuffle(points, 1, &rng); 39 40 // 使用KMeans 41 kmeans(points, numCluster, labels, TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1), 3, KMEANS_PP_CENTERS, centers); 42 43 // 用不同颜色显示分类 44 img = Scalar::all(255); 45 for (int i = 0; i < sampleCount; i++) { 46 int index = labels.at<int>(i); 47 Point p = points.at<Point2f>(i); 48 circle(img, p, 2, colorTab[index], -1, 8); 49 } 50 51 // 每个聚类的中心来绘制圆 52 for (int i = 0; i < centers.rows; i++) { 53 int x = centers.at<float>(i, 0); 54 int y = centers.at<float>(i, 1); 55 printf("c.x= %d, c.y=%d", x, y); 56 circle(img, Point(x, y), 40, colorTab[i], 1, LINE_AA); 57 } 58 59 imshow("KMeans-Data-Demo", img); 60 waitKey(0); 61 return 0; 62 }
可见,随机生成的数据被分成了四块,每块的中心坐标如下:
标签:img,int,numCluster,rng,KMeans,Scalar,实例,255,OpenCV3.2 From: https://www.cnblogs.com/ybqjymy/p/17639439.html