1 #include "itkImage.h" 2 #include "itkThresholdSegmentationLevelSetImageFilter.h" 3 4 #include "itkFastMarchingImageFilter.h" 5 #include "itkBinaryThresholdImageFilter.h" 6 #include "itkImageFileReader.h" 7 #include "itkImageFileWriter.h" 8 #include "itkZeroCrossingImageFilter.h" 9 10 11 int main( int argc, char *argv[] ) 12 { 13 /*if( argc < 8 ) 14 { 15 std::cerr << "Missing Parameters " << std::endl; 16 std::cerr << "Usage: " << argv[0]; 17 std::cerr << " inputImage outputImage"; 18 std::cerr << " seedX seedY InitialDistance"; 19 std::cerr << " LowerThreshold"; 20 std::cerr << " UpperThreshold"; 21 std::cerr << " [CurvatureScaling == 1.0]"; 22 std::cerr << std::endl; 23 return EXIT_FAILURE; 24 }*/ 25 /*现在我们使用一个特殊的像素类型和维来定义图像类型。在这种情况下我们将使用二维 26 浮点型图像*/ 27 typedef float InternalPixelType; 28 const unsigned int Dimension = 2; 29 typedef itk::Image< InternalPixelType, Dimension > InternalImageType; 30 //接下来的几行使用New()方式实例化一个ThresholdSegmentationLevelSetImageFilter: 31 typedef unsigned char OutputPixelType; 32 typedef itk::Image< OutputPixelType, Dimension > OutputImageType; 33 typedef itk::BinaryThresholdImageFilter<InternalImageType, OutputImageType> 34 ThresholdingFilterType; 35 36 ThresholdingFilterType::Pointer thresholder = ThresholdingFilterType::New(); 37 38 thresholder->SetLowerThreshold( -1000.0 ); 39 thresholder->SetUpperThreshold( 0.0 ); 40 41 thresholder->SetOutsideValue( 0 ); 42 thresholder->SetInsideValue( 255 ); 43 44 typedef itk::ImageFileReader< InternalImageType > ReaderType; 45 typedef itk::ImageFileWriter< OutputImageType > WriterType; 46 47 ReaderType::Pointer reader = ReaderType::New(); 48 WriterType::Pointer writer = WriterType::New(); 49 //输入图像 50 reader->SetFileName( "BrainProtonDensitySlice.png" ); 51 //保存图像 52 writer->SetFileName( "naoshi_Threshold_LevelSet.png" ); 53 54 typedef itk::FastMarchingImageFilter< InternalImageType, InternalImageType > 55 FastMarchingFilterType; 56 57 FastMarchingFilterType::Pointer fastMarching = FastMarchingFilterType::New(); 58 59 typedef itk::ThresholdSegmentationLevelSetImageFilter< InternalImageType, 60 InternalImageType > ThresholdSegmentationLevelSetImageFilterType; 61 ThresholdSegmentationLevelSetImageFilterType::Pointer thresholdSegmentation = 62 ThresholdSegmentationLevelSetImageFilterType::New(); 63 /*对于ThresholdSegmentationLevelSetImageFilter,缩放比例参数用来平衡从等式(9 - 3) 64 中的传播(膨胀)和曲率(表面平滑)系数的影响。这个滤波器中不使用水平对流系数。使用 65 SetPropagationScaling()和SetCurvatureScaling()方式来设置这些系数。在这个例子中这两个 66 系数都设置为1.0*/ 67 thresholdSegmentation->SetPropagationScaling( 1.0 ); 68 /*if ( argc > 8 ) 69 { 70 thresholdSegmentation->SetCurvatureScaling( atof(argv[8]) ); 71 } 72 else 73 {*/ 74 thresholdSegmentation->SetCurvatureScaling( 1.0 ); 75 /* }*/ 76 77 thresholdSegmentation->SetMaximumRMSError( 0.02 ); 78 thresholdSegmentation->SetNumberOfIterations( 1200 ); 79 /* 收敛标准MaximumRMSError和MaximumIterations设置的和前面例子中的一样。现在我 80 们设置上下门限U和L,以及在初始化模型时使用的等值面值*/ 81 //上门限值(U) 82 thresholdSegmentation->SetUpperThreshold( ::atof("250") ); 83 //下门限值(L) 84 thresholdSegmentation->SetLowerThreshold( ::atof("210") ); 85 thresholdSegmentation->SetIsoSurfaceValue(0.0); 86 87 thresholdSegmentation->SetInput( fastMarching->GetOutput() ); 88 thresholdSegmentation->SetFeatureImage( reader->GetOutput() ); 89 thresholder->SetInput( thresholdSegmentation->GetOutput() ); 90 writer->SetInput( thresholder->GetOutput() ); 91 92 typedef FastMarchingFilterType::NodeContainer NodeContainer; 93 typedef FastMarchingFilterType::NodeType NodeType; 94 95 NodeContainer::Pointer seeds = NodeContainer::New(); 96 97 InternalImageType::IndexType seedPosition; 98 //设置种子点位置 99 seedPosition[0] = atoi("81"); 100 seedPosition[1] = atoi("112"); 101 //表面到种子点的最初距离 102 const double initialDistance = atof("5"); 103 104 NodeType node; 105 106 const double seedValue = - initialDistance; 107 108 node.SetValue( seedValue ); 109 node.SetIndex( seedPosition ); 110 111 seeds->Initialize(); 112 seeds->InsertElement( 0, node ); 113 114 fastMarching->SetTrialPoints( seeds ); 115 116 fastMarching->SetSpeedConstant( 1.0 ); 117 /*调用writer上的Updata()方法引发了管道的运行。通常在出现错误和抛出异议时,从一 118 个try / catch模块调用updata:*/ 119 try 120 { 121 reader->Update(); 122 const InternalImageType * inputImage = reader->GetOutput(); 123 fastMarching->SetOutputRegion( inputImage->GetBufferedRegion() ); 124 fastMarching->SetOutputSpacing( inputImage->GetSpacing() ); 125 fastMarching->SetOutputOrigin( inputImage->GetOrigin() ); 126 fastMarching->SetOutputDirection( inputImage->GetDirection() ); 127 writer->Update(); 128 } 129 catch( itk::ExceptionObject & excep ) 130 { 131 std::cerr << "Exception caught !" << std::endl; 132 std::cerr << excep << std::endl; 133 return EXIT_FAILURE; 134 } 135 136 std::cout << std::endl; 137 std::cout << "Max. no. iterations: " << thresholdSegmentation->GetNumberOfIterations() << std::endl; 138 std::cout << "Max. RMS error: " << thresholdSegmentation->GetMaximumRMSError() << std::endl; 139 std::cout << std::endl; 140 std::cout << "No. elpased iterations: " << thresholdSegmentation->GetElapsedIterations() << std::endl; 141 std::cout << "RMS change: " << thresholdSegmentation->GetRMSChange() << std::endl; 142 143 typedef itk::ImageFileWriter< InternalImageType > InternalWriterType; 144 //fastMarching快速步进输出水平集 145 InternalWriterType::Pointer mapWriter = InternalWriterType::New(); 146 mapWriter->SetInput( fastMarching->GetOutput() ); 147 mapWriter->SetFileName("fastMarchingImage.mha"); 148 mapWriter->Update(); 149 //阈值水平集分割的速度(传播系数P)图像 150 InternalWriterType::Pointer speedWriter = InternalWriterType::New(); 151 speedWriter->SetInput( thresholdSegmentation->GetSpeedImage() ); 152 speedWriter->SetFileName("speedTermImage.mha"); 153 speedWriter->Update(); 154 155 return EXIT_SUCCESS; 156 }标签:typedef,InternalImageType,ITK,16,fastMarching,thresholdSegmentation,New,Pointer, From: https://www.cnblogs.com/ybqjymy/p/17635104.html