首页 > 其他分享 >一文详解TextBrewer

一文详解TextBrewer

时间:2023-08-08 12:00:12浏览次数:54  
标签:BERT 一文 训练 教师 TextBrewer 详解 hidden 模型 蒸馏

本文分享自华为云社区《TextBrewer:融合并改进了NLP和CV中的多种知识蒸馏技术、提供便捷快速的知识蒸馏框架、提升模型的推理速度,减少内存占用》,作者:汀丶。

TextBrewer是一个基于PyTorch的、为实现NLP中的知识蒸馏任务而设计的工具包,融合并改进了NLP和CV中的多种知识蒸馏技术,提供便捷快速的知识蒸馏框架,用于以较低的性能损失压缩神经网络模型的大小,提升模型的推理速度,减少内存占用。

1.简介

TextBrewer 为NLP中的知识蒸馏任务设计,融合了多种知识蒸馏技术,提供方便快捷的知识蒸馏框架。

主要特点:

  • 模型无关:适用于多种模型结构(主要面向Transfomer结构)
  • 方便灵活:可自由组合多种蒸馏方法;可方便增加自定义损失等模块
  • 非侵入式:无需对教师与学生模型本身结构进行修改
  • 支持典型的NLP任务:文本分类、阅读理解、序列标注等

TextBrewer目前支持的知识蒸馏技术有:

  • 软标签与硬标签混合训练
  • 动态损失权重调整与蒸馏温度调整
  • 多种蒸馏损失函数: hidden states MSE, attention-based loss, neuron selectivity transfer, …
  • 任意构建中间层特征匹配方案
  • 多教师知识蒸馏

TextBrewer的主要功能与模块分为3块:

  1. Distillers:进行蒸馏的核心部件,不同的distiller提供不同的蒸馏模式。目前包含GeneralDistiller, MultiTeacherDistiller, MultiTaskDistiller等
  2. Configurations and Presets:训练与蒸馏方法的配置,并提供预定义的蒸馏策略以及多种知识蒸馏损失函数
  3. Utilities:模型参数分析显示等辅助工具

用户需要准备:

  1. 已训练好的教师模型, 待蒸馏的学生模型
  2. 训练数据与必要的实验配置, 即可开始蒸馏

在多个典型NLP任务上,TextBrewer都能取得较好的压缩效果。相关实验见蒸馏效果。

2.TextBrewer结构

cke_156.png

2.1 安装要求

  • Python >= 3.6
  • PyTorch >= 1.1.0
  • TensorboardX or Tensorboard
  • NumPy
  • tqdm
  • Transformers >= 2.0 (可选, Transformer相关示例需要用到)
  • Apex == 0.1.0 (可选,用于混合精度训练)
  • 从PyPI自动下载安装包安装:
pip install textbrewer
  • 从源码文件夹安装:
git clone https://github.com/airaria/TextBrewer.git

pip install ./textbrewer

2.2工作流程

cke_157.png

cke_158.png

  • Stage 1 : 蒸馏之前的准备工作:
    1. 训练教师模型
    2. 定义与初始化学生模型(随机初始化,或载入预训练权重)
    3. 构造蒸馏用数据集的dataloader,训练学生模型用的optimizer和learning rate scheduler
  • Stage 2 : 使用TextBrewer蒸馏:
    1. 构造训练配置(TrainingConfig)和蒸馏配置(DistillationConfig),初始化distiller
    2. 定义adaptor 和 callback ,分别用于适配模型输入输出和训练过程中的回调
    3. 调用distiller的train方法开始蒸馏

2.3 以蒸馏BERT-base到3层BERT为例展示TextBrewer用法

在开始蒸馏之前准备:

  • 训练好的教师模型teacher_model (BERT-base),待训练学生模型student_model (3-layer BERT)
  • 数据集dataloader,优化器optimizer,学习率调节器类或者构造函数scheduler_class 和构造用的参数字典 scheduler_args

使用TextBrewer蒸馏:

import textbrewer

from textbrewer import GeneralDistiller

from textbrewer import TrainingConfig, DistillationConfig

#展示模型参数量的统计

print("\nteacher_model's parametrers:")

result, _ = textbrewer.utils.display_parameters(teacher_model,max_level=3)

print (result)

print("student_model's parametrers:")

result, _ = textbrewer.utils.display_parameters(student_model,max_level=3)

print (result)

#定义adaptor用于解释模型的输出

def simple_adaptor(batch, model_outputs):

# model输出的第二、三个元素分别是logits和hidden states

return {'logits': model_outputs[1], 'hidden': model_outputs[2]}

#蒸馏与训练配置

# 匹配教师和学生的embedding层;同时匹配教师的第8层和学生的第2层

distill_config = DistillationConfig(

intermediate_matches=[

{'layer_T':0, 'layer_S':0, 'feature':'hidden', 'loss': 'hidden_mse','weight' : 1},

{'layer_T':8, 'layer_S':2, 'feature':'hidden', 'loss': 'hidden_mse','weight' : 1}])

train_config = TrainingConfig()

#初始化distiller

distiller = GeneralDistiller(

train_config=train_config, distill_config = distill_config,

model_T = teacher_model, model_S = student_model,

adaptor_T = simple_adaptor, adaptor_S = simple_adaptor)

#开始蒸馏

with distiller:

distiller.train(optimizer, dataloader, num_epochs=1, scheduler_class=scheduler_class, scheduler_args = scheduler_args, callback=None)

2.4蒸馏任务示例

  • Transformers 4示例
    • examples/notebook_examples/sst2.ipynb (英文): SST-2文本分类任务上的BERT模型训练与蒸馏。
    • examples/notebook_examples/msra_ner.ipynb (中文): MSRA NER中文命名实体识别任务上的BERT模型训练与蒸馏。
    • examples/notebook_examples/sqaudv1.1.ipynb (英文): SQuAD 1.1英文阅读理解任务上的BERT模型训练与蒸馏。
  • examples/random_token_example: 一个可运行的简单示例,在文本分类任务上以随机文本为输入,演示TextBrewer用法。
  • examples/cmrc2018_example (中文): CMRC 2018上的中文阅读理解任务蒸馏,并使用DRCD数据集做数据增强。
  • examples/mnli_example (英文): MNLI任务上的英文句对分类任务蒸馏,并展示如何使用多教师蒸馏。
  • examples/conll2003_example (英文): CoNLL-2003英文实体识别任务上的序列标注任务蒸馏。
  • examples/msra_ner_example (中文): MSRA NER(中文命名实体识别)任务上,使用分布式数据并行训练的Chinese-ELECTRA-base模型蒸馏。

2.4.1蒸馏效果

我们在多个中英文文本分类、阅读理解、序列标注数据集上进行了蒸馏实验。实验的配置和效果如下。

我们测试了不同的学生模型,为了与已有公开结果相比较,除了BiGRU都是和BERT一样的多层Transformer结构。模型的参数如下表所示。需要注意的是,参数量的统计包括了embedding层,但不包括最终适配各个任务的输出层。

  • 英文模型

Model

#Layers

Hidden size

Feed-forward size

#Params

Relative size

BERT-base-cased (教师)

12

768

3072

108M

100%

T6 (学生)

6

768

3072

65M

60%

T3 (学生)

3

768

3072

44M

41%

T3-small (学生)

3

384

1536

17M

16%

T4-Tiny (学生)

4

312

1200

14M

13%

T12-nano (学生)

12

256

1024

17M

16%

BiGRU (学生)

-

768

-

31M

29%

  • 中文模型

Model

#Layers

Hidden size

Feed-forward size

#Params

Relative size

RoBERTa-wwm-ext (教师)

12

768

3072

102M

100%

Electra-base (教师)

12

768

3072

102M

100%

T3 (学生)

3

768

3072

38M

37%

T3-small (学生)

3

384

1536

14M

14%

T4-Tiny (学生)

4

312

1200

11M

11%

Electra-small (学生)

12

256

1024

12M

12%

2.4.2 蒸馏配置

distill_config = DistillationConfig(temperature = 8, intermediate_matches = matches)

#其他参数为默认值

不同的模型用的matches我们采用了以下配置:

Model

matches

BiGRU

None

T6

L6_hidden_mse + L6_hidden_smmd

T3

L3_hidden_mse + L3_hidden_smmd

T3-small

L3n_hidden_mse + L3_hidden_smmd

T4-Tiny

L4t_hidden_mse + L4_hidden_smmd

T12-nano

small_hidden_mse + small_hidden_smmd

Electra-small

small_hidden_mse + small_hidden_smmd

各种matches的定义在examples/matches/matches.py中。均使用GeneralDistiller进行蒸馏。

2.4.3训练配置

蒸馏用的学习率 lr=1e-4(除非特殊说明)。训练30~60轮。

2.4.4英文实验结果

在英文实验中,我们使用了如下三个典型数据集。

Dataset

Task type

Metrics

#Train

#Dev

Note

MNLI

文本分类

m/mm Acc

393K

20K

句对三分类任务

SQuAD 1.1

阅读理解

EM/F1

88K

11K

篇章片段抽取型阅读理解

CoNLL-2003

序列标注

F1

23K

6K

命名实体识别任务

我们在下面两表中列出了DistilBERTBERT-PKDBERT-of-TheseusTinyBERT 等公开的蒸馏结果,并与我们的结果做对比。

Public results:

Model (public)

MNLI

SQuAD

CoNLL-2003

DistilBERT (T6)

81.6 / 81.1

78.1 / 86.2

-

BERT6-PKD (T6)

81.5 / 81.0

77.1 / 85.3

-

BERT-of-Theseus (T6)

82.4/ 82.1

-

-

BERT3-PKD (T3)

76.7 / 76.3

-

-

TinyBERT (T4-tiny)

82.8 / 82.9

72.7 / 82.1

-

Our results:

Model (ours)

MNLI

SQuAD

CoNLL-2003

BERT-base-cased (教师)

83.7 / 84.0

81.5 / 88.6

91.1

BiGRU

-

-

85.3

T6

83.5 / 84.0

80.8 / 88.1

90.7

T3

81.8 / 82.7

76.4 / 84.9

87.5

T3-small

81.3 / 81.7

72.3 / 81.4

78.6

T4-tiny

82.0 / 82.6

75.2 / 84.0

89.1

T12-nano

83.2 / 83.9

79.0 / 86.6

89.6

说明:

  1. 公开模型的名称后括号内是其等价的模型结构
  2. 蒸馏到T4-tiny的实验中,SQuAD任务上使用了NewsQA作为增强数据;CoNLL-2003上使用了HotpotQA的篇章作为增强数据
  3. 蒸馏到T12-nano的实验中,CoNLL-2003上使用了HotpotQA的篇章作为增强数据

2.4.5中文实验结果

在中文实验中,我们使用了如下典型数据集。

Dataset

Task type

Metrics

#Train

#Dev

Note

XNLI

文本分类

Acc

393K

2.5K

MNLI的中文翻译版本,3分类任务

LCQMC

文本分类

Acc

239K

8.8K

句对二分类任务,判断两个句子的语义是否相同

CMRC 2018

阅读理解

EM/F1

10K

3.4K

篇章片段抽取型阅读理解

DRCD

阅读理解

EM/F1

27K

3.5K

繁体中文篇章片段抽取型阅读理解

MSRA NER

序列标注

F1

45K

3.4K (测试集)

中文命名实体识别

实验结果如下表所示。

Model

XNLI

LCQMC

CMRC 2018

DRCD

RoBERTa-wwm-ext (教师)

79.9

89.4

68.8 / 86.4

86.5 / 92.5

T3

78.4

89.0

66.4 / 84.2

78.2 / 86.4

T3-small

76.0

88.1

58.0 / 79.3

75.8 / 84.8

T4-tiny

76.2

88.4

61.8 / 81.8

77.3 / 86.1

Model

XNLI

LCQMC

CMRC 2018

DRCD

MSRA NER

Electra-base (教师)

77.8

89.8

65.6 / 84.7

86.9 / 92.3

95.14

Electra-small

77.7

89.3

66.5 / 84.9

85.5 / 91.3

93.48

说明:

  1. 以RoBERTa-wwm-ext为教师模型蒸馏CMRC 2018和DRCD时,不采用学习率衰减
  2. CMRC 2018和DRCD两个任务上蒸馏时他们互作为增强数据
  3. Electra-base的教师模型训练设置参考自Chinese-ELECTRA
  4. Electra-small学生模型采用预训练权重初始化

3.核心概念

3.1Configurations

  • TrainingConfig 和 DistillationConfig:训练和蒸馏相关的配置。

3.2Distillers

Distiller负责执行实际的蒸馏过程。目前实现了以下的distillers:

  • BasicDistiller: 提供单模型单任务蒸馏方式。可用作测试或简单实验。
  • GeneralDistiller (常用): 提供单模型单任务蒸馏方式,并且支持中间层特征匹配,一般情况下推荐使用。
  • MultiTeacherDistiller: 多教师蒸馏。将多个(同任务)教师模型蒸馏到一个学生模型上。暂不支持中间层特征匹配。
  • MultiTaskDistiller:多任务蒸馏。将多个(不同任务)单任务教师模型蒸馏到一个多任务学生模型。
  • BasicTrainer:用于单个模型的有监督训练,而非蒸馏。可用于训练教师模型。

3.3用户定义函数

蒸馏实验中,有两个组件需要由用户提供,分别是callback 和 adaptor :

3.3.1Callback

回调函数。在每个checkpoint,保存模型后会被distiller调用,并传入当前模型。可以借由回调函数在每个checkpoint评测模型效果。

3.3.2Adaptor

将模型的输入和输出转换为指定的格式,向distiller解释模型的输入和输出,以便distiller根据不同的策略进行不同的计算。在每个训练步,batch和模型的输出model_outputs会作为参数传递给adaptor,adaptor负责重新组织这些数据,返回一个字典。

更多细节可参见完整文档中的说明。

4.FAQ

Q: 学生模型该如何初始化?

A: 知识蒸馏本质上是“老师教学生”的过程。在初始化学生模型时,可以采用随机初始化的形式(即完全不包含任何先验知识),也可以载入已训练好的模型权重。例如,从BERT-base模型蒸馏到3层BERT时,可以预先载入RBT3模型权重(中文任务)或BERT的前三层权重(英文任务),然后进一步进行蒸馏,避免了蒸馏过程的“冷启动”问题。我们建议用户在使用时尽量采用已预训练过的学生模型,以充分利用大规模数据预训练所带来的优势。

Q: 如何设置蒸馏的训练参数以达到一个较好的效果?

A: 知识蒸馏的比有标签数据上的训练需要更多的训练轮数与更大的学习率。比如,BERT-base上训练SQuAD一般以lr=3e-5训练3轮左右即可达到较好的效果;而蒸馏时需要以lr=1e-4训练30~50轮。当然具体到各个任务上肯定还有区别,我们的建议仅是基于我们的经验得出的,仅供参考。

Q: 我的教师模型和学生模型的输入不同(比如词表不同导致input_ids不兼容),该如何进行蒸馏?

A: 需要分别为教师模型和学生模型提供不同的batch,参见完整文档中的 Feed Different batches to Student and Teacher, Feed Cached Values 章节。

Q: 我缓存了教师模型的输出,它们可以用于加速蒸馏吗?

A: 可以, 参见完整文档中的 Feed Different batches to Student and Teacher, Feed Cached Values 章节。

点击关注,第一时间了解华为云新鲜技术~

标签:BERT,一文,训练,教师,TextBrewer,详解,hidden,模型,蒸馏
From: https://www.cnblogs.com/huaweiyun/p/17613813.html

相关文章

  • Java Spring MVC 图片上传操作详解
    JavaSpringMVC图片上传操作详解在现代的Web开发中,图片上传是一个非常常见的需求。而JavaSpringMVC框架则是JavaWeb开发中常用的框架之一。本文将介绍如何在JavaSpringMVC框架中实现图片上传操作。JavaSpringMVC图片上传操作详解1.创建文件上传表单首先需要在前端页面......
  • JavaWebSocket心跳机制详解
    JavaWebSocket心跳机制详解WebSocket是一种在Web浏览器和服务器之间进行全双工通信的协议,它提供了一种简单而强大的方式来实现实时数据传输。在使用WebSocket时,心跳机制是非常关键的,它能够保持连接的稳定性并及时发现连接的异常。本文将详细解释JavaWebSocket心跳机制的实现原理......
  • 软件测试|MySQL WHERE条件查询详解:筛选出需要的数据
    简介在数据库中,我们常常需要从表中筛选出符合特定条件的数据,以便满足业务需求或获取有用的信息。MySQL提供了WHERE条件查询,使我们能够轻松地筛选数据。本文将详细介绍MySQLWHERE条件查询的用法和示例,帮助大家更好地理解和应用这一功能。WHERE条件查询的基本语法SELECT列1,列2,.......
  • 软件测试|MySQL ORDER BY详解:排序查询的利器
    简介在数据库中,我们经常需要对查询结果进行排序,以便更好地展示数据或满足特定的业务需求。MySQL提供了ORDERBY子句,使我们能够轻松地对查询结果进行排序。本文将详细介绍MySQLORDERBY的用法和示例,帮助大家更好地理解和应用这一功能。基本语法在MySQL中,ORDERBY子句用于对查询结果......
  • 软件测试|MySQL逻辑运算符使用详解
    简介在MySQL中,逻辑运算符用于处理布尔类型的数据,进行逻辑判断和组合条件。逻辑运算符主要包括AND、OR、NOT三种,它们可以帮助我们在查询和条件语句中进行复杂的逻辑操作。本文将详细介绍MySQL中逻辑运算符的使用方法和示例。AND运算符AND运算符用于将多个条件组合起来,要求所有条件都......
  • /dev/zero是什么(详解)
    转载自:文章 FrameBuffer是出现在2.2.xx内核当中的一种驱动程序接口。这种接口将显示设备抽象为帧缓冲区。用户可以将它看成是显示内存的一个映像,将其映射到进程地址空间之后,就可以直接进行读写操作,而写操作可以立即反应在屏幕上。该驱动程序的设备文件一般是/dev/fb0、/dev......
  • FAST协议详解1 不同数据类型的编码与解码
    一、概述FAST协议里不同的数据类型在编码时有非常大的区别,比如整数只需要将二进制数据转为十进制即可,而浮点数则需要先传小数点位数,再传一个整数,最后将二者结合起来才是最终结果。本篇使用openfast自设了一些数据并编码成FAST数据,再对这些FAST数据进行人工解码,以图看懂FAST协议是......
  • 第二节:KeepAlived详解、Lvs+KeepAlived实战
    一.        二.        三.         !作       者:Yaopengfei(姚鹏飞)博客地址:http://www.cnblogs.com/yaopengfei/声     明1:如有错误,欢迎讨论,请勿谩骂^_^。声     明2:原创博客请在转载......
  • TextBrewer:融合并改进了NLP和CV中的多种知识蒸馏技术、提供便捷快速的知识蒸馏框架、
    TextBrewer:融合并改进了NLP和CV中的多种知识蒸馏技术、提供便捷快速的知识蒸馏框架、提升模型的推理速度,减少内存占用TextBrewer是一个基于PyTorch的、为实现NLP中的知识蒸馏任务而设计的工具包,融合并改进了NLP和CV中的多种知识蒸馏技术,提供便捷快速的知识蒸馏框架,用于以较低的......
  • 【JVM技术指南】「GC内存诊断-故障问题排查」一文教你如何打印及分析JVM的GC日志(实战
    当我们在开发Java应用程序时,JVM的GC(垃圾回收)是一个非常重要的话题。GC的作用是回收不再使用的内存,以便程序可以继续运行。在JVM中,GC的日志记录了GC的详细信息,包括GC的类型、时间、内存使用情况等。在本文中,我们将介绍JVMGC日志的格式、含义和分析方法。JVMGC日志格式JVMGC日志的......