首页 > 系统相关 >TextBrewer:融合并改进了NLP和CV中的多种知识蒸馏技术、提供便捷快速的知识蒸馏框架、提升模型的推理速度,减少内存占用

TextBrewer:融合并改进了NLP和CV中的多种知识蒸馏技术、提供便捷快速的知识蒸馏框架、提升模型的推理速度,减少内存占用

时间:2023-08-07 20:33:50浏览次数:53  
标签:教师 NLP 蒸馏 训练 BERT 模型 知识 hidden

TextBrewer:融合并改进了NLP和CV中的多种知识蒸馏技术、提供便捷快速的知识蒸馏框架、提升模型的推理速度,减少内存占用

TextBrewer是一个基于PyTorch的、为实现NLP中的知识蒸馏任务而设计的工具包,
融合并改进了NLP和CV中的多种知识蒸馏技术,提供便捷快速的知识蒸馏框架,用于以较低的性能损失压缩神经网络模型的大小,提升模型的推理速度,减少内存占用。

1.简介

TextBrewer 为NLP中的知识蒸馏任务设计,融合了多种知识蒸馏技术,提供方便快捷的知识蒸馏框架。

主要特点:

  • 模型无关:适用于多种模型结构(主要面向Transfomer结构)
  • 方便灵活:可自由组合多种蒸馏方法;可方便增加自定义损失等模块
  • 非侵入式:无需对教师与学生模型本身结构进行修改
  • 支持典型的NLP任务:文本分类、阅读理解、序列标注等

TextBrewer目前支持的知识蒸馏技术有:

  • 软标签与硬标签混合训练
  • 动态损失权重调整与蒸馏温度调整
  • 多种蒸馏损失函数: hidden states MSE, attention-based loss, neuron selectivity transfer, ...
  • 任意构建中间层特征匹配方案
  • 多教师知识蒸馏
  • ...

TextBrewer的主要功能与模块分为3块:

  1. Distillers:进行蒸馏的核心部件,不同的distiller提供不同的蒸馏模式。目前包含GeneralDistiller, MultiTeacherDistiller, MultiTaskDistiller等
  2. Configurations and Presets:训练与蒸馏方法的配置,并提供预定义的蒸馏策略以及多种知识蒸馏损失函数
  3. Utilities:模型参数分析显示等辅助工具

用户需要准备:

  1. 已训练好的教师模型, 待蒸馏的学生模型
  2. 训练数据与必要的实验配置, 即可开始蒸馏

在多个典型NLP任务上,TextBrewer都能取得较好的压缩效果。相关实验见蒸馏效果

2.TextBrewer结构

2.1 安装要求

  • Python >= 3.6

  • PyTorch >= 1.1.0

  • TensorboardX or Tensorboard

  • NumPy

  • tqdm

  • Transformers >= 2.0 (可选, Transformer相关示例需要用到)

  • Apex == 0.1.0 (可选,用于混合精度训练)

  • 从PyPI自动下载安装包安装:

pip install textbrewer
  • 从源码文件夹安装:
git clone https://github.com/airaria/TextBrewer.git
pip install ./textbrewer

2.2工作流程

  • Stage 1 : 蒸馏之前的准备工作:

    1. 训练教师模型
    2. 定义与初始化学生模型(随机初始化,或载入预训练权重)
    3. 构造蒸馏用数据集的dataloader,训练学生模型用的optimizer和learning rate scheduler
  • Stage 2 : 使用TextBrewer蒸馏:

    1. 构造训练配置(TrainingConfig)和蒸馏配置(DistillationConfig),初始化distiller
    2. 定义adaptorcallback ,分别用于适配模型输入输出和训练过程中的回调
    3. 调用distillertrain方法开始蒸馏

2.3 以蒸馏BERT-base到3层BERT为例展示TextBrewer用法

在开始蒸馏之前准备:

  • 训练好的教师模型teacher_model (BERT-base),待训练学生模型student_model (3-layer BERT)
  • 数据集dataloader,优化器optimizer,学习率调节器类或者构造函数scheduler_class 和构造用的参数字典 scheduler_args

使用TextBrewer蒸馏:

import textbrewer
from textbrewer import GeneralDistiller
from textbrewer import TrainingConfig, DistillationConfig

#展示模型参数量的统计
print("\nteacher_model's parametrers:")
result, _ = textbrewer.utils.display_parameters(teacher_model,max_level=3)
print (result)

print("student_model's parametrers:")
result, _ = textbrewer.utils.display_parameters(student_model,max_level=3)
print (result)

#定义adaptor用于解释模型的输出
def simple_adaptor(batch, model_outputs):
    # model输出的第二、三个元素分别是logits和hidden states
    return {'logits': model_outputs[1], 'hidden': model_outputs[2]}

#蒸馏与训练配置
# 匹配教师和学生的embedding层;同时匹配教师的第8层和学生的第2层
distill_config = DistillationConfig(
    intermediate_matches=[    
     {'layer_T':0, 'layer_S':0, 'feature':'hidden', 'loss': 'hidden_mse','weight' : 1},
     {'layer_T':8, 'layer_S':2, 'feature':'hidden', 'loss': 'hidden_mse','weight' : 1}])
train_config = TrainingConfig()

#初始化distiller
distiller = GeneralDistiller(
    train_config=train_config, distill_config = distill_config,
    model_T = teacher_model, model_S = student_model, 
    adaptor_T = simple_adaptor, adaptor_S = simple_adaptor)

#开始蒸馏
with distiller:
    distiller.train(optimizer, dataloader, num_epochs=1, scheduler_class=scheduler_class, scheduler_args = scheduler_args, callback=None)

2.4蒸馏任务示例

2.4.1蒸馏效果

我们在多个中英文文本分类、阅读理解、序列标注数据集上进行了蒸馏实验。实验的配置和效果如下。

我们测试了不同的学生模型,为了与已有公开结果相比较,除了BiGRU都是和BERT一样的多层Transformer结构。模型的参数如下表所示。需要注意的是,参数量的统计包括了embedding层,但不包括最终适配各个任务的输出层。

  • 英文模型
Model #Layers Hidden size Feed-forward size #Params Relative size
BERT-base-cased (教师) 12 768 3072 108M 100%
T6 (学生) 6 768 3072 65M 60%
T3 (学生) 3 768 3072 44M 41%
T3-small (学生) 3 384 1536 17M 16%
T4-Tiny (学生) 4 312 1200 14M 13%
T12-nano (学生) 12 256 1024 17M 16%
BiGRU (学生) - 768 - 31M 29%
  • 中文模型
Model #Layers Hidden size Feed-forward size #Params Relative size
RoBERTa-wwm-ext (教师) 12 768 3072 102M 100%
Electra-base (教师) 12 768 3072 102M 100%
T3 (学生) 3 768 3072 38M 37%
T3-small (学生) 3 384 1536 14M 14%
T4-Tiny (学生) 4 312 1200 11M 11%
Electra-small (学生) 12 256 1024 12M 12%

2.4.2 蒸馏配置

distill_config = DistillationConfig(temperature = 8, intermediate_matches = matches)
#其他参数为默认值

不同的模型用的matches我们采用了以下配置:

Model matches
BiGRU None
T6 L6_hidden_mse + L6_hidden_smmd
T3 L3_hidden_mse + L3_hidden_smmd
T3-small L3n_hidden_mse + L3_hidden_smmd
T4-Tiny L4t_hidden_mse + L4_hidden_smmd
T12-nano small_hidden_mse + small_hidden_smmd
Electra-small small_hidden_mse + small_hidden_smmd

各种matches的定义在examples/matches/matches.py中。均使用GeneralDistiller进行蒸馏。

2.4.3训练配置

蒸馏用的学习率 lr=1e-4(除非特殊说明)。训练30~60轮。

2.4.4英文实验结果

在英文实验中,我们使用了如下三个典型数据集。

Dataset Task type Metrics #Train #Dev Note
MNLI 文本分类 m/mm Acc 393K 20K 句对三分类任务
SQuAD 1.1 阅读理解 EM/F1 88K 11K 篇章片段抽取型阅读理解
CoNLL-2003 序列标注 F1 23K 6K 命名实体识别任务

我们在下面两表中列出了DistilBERT, BERT-PKD, BERT-of-Theseus, TinyBERT 等公开的蒸馏结果,并与我们的结果做对比。

Public results:

Model (public) MNLI SQuAD CoNLL-2003
DistilBERT (T6) 81.6 / 81.1 78.1 / 86.2 -
BERT6-PKD (T6) 81.5 / 81.0 77.1 / 85.3 -
BERT-of-Theseus (T6) 82.4/ 82.1 - -
BERT3-PKD (T3) 76.7 / 76.3 - -
TinyBERT (T4-tiny) 82.8 / 82.9 72.7 / 82.1 -

Our results:

Model (ours) MNLI SQuAD CoNLL-2003
BERT-base-cased (教师) 83.7 / 84.0 81.5 / 88.6 91.1
BiGRU - - 85.3
T6 83.5 / 84.0 80.8 / 88.1 90.7
T3 81.8 / 82.7 76.4 / 84.9 87.5
T3-small 81.3 / 81.7 72.3 / 81.4 78.6
T4-tiny 82.0 / 82.6 75.2 / 84.0 89.1
T12-nano 83.2 / 83.9 79.0 / 86.6 89.6

说明:

  1. 公开模型的名称后括号内是其等价的模型结构
  2. 蒸馏到T4-tiny的实验中,SQuAD任务上使用了NewsQA作为增强数据;CoNLL-2003上使用了HotpotQA的篇章作为增强数据
  3. 蒸馏到T12-nano的实验中,CoNLL-2003上使用了HotpotQA的篇章作为增强数据

2.4.5中文实验结果

在中文实验中,我们使用了如下典型数据集。

Dataset Task type Metrics #Train #Dev Note
XNLI 文本分类 Acc 393K 2.5K MNLI的中文翻译版本,3分类任务
LCQMC 文本分类 Acc 239K 8.8K 句对二分类任务,判断两个句子的语义是否相同
CMRC 2018 阅读理解 EM/F1 10K 3.4K 篇章片段抽取型阅读理解
DRCD 阅读理解 EM/F1 27K 3.5K 繁体中文篇章片段抽取型阅读理解
MSRA NER 序列标注 F1 45K 3.4K (测试集) 中文命名实体识别

实验结果如下表所示。

Model XNLI LCQMC CMRC 2018 DRCD
RoBERTa-wwm-ext (教师) 79.9 89.4 68.8 / 86.4 86.5 / 92.5
T3 78.4 89.0 66.4 / 84.2 78.2 / 86.4
T3-small 76.0 88.1 58.0 / 79.3 75.8 / 84.8
T4-tiny 76.2 88.4 61.8 / 81.8 77.3 / 86.1
Model XNLI LCQMC CMRC 2018 DRCD MSRA NER
Electra-base (教师) 77.8 89.8 65.6 / 84.7 86.9 / 92.3 95.14
Electra-small 77.7 89.3 66.5 / 84.9 85.5 / 91.3 93.48

说明:

  1. 以RoBERTa-wwm-ext为教师模型蒸馏CMRC 2018和DRCD时,不采用学习率衰减
  2. CMRC 2018和DRCD两个任务上蒸馏时他们互作为增强数据
  3. Electra-base的教师模型训练设置参考自Chinese-ELECTRA
  4. Electra-small学生模型采用预训练权重初始化

3.核心概念

3.1Configurations

  • TrainingConfigDistillationConfig:训练和蒸馏相关的配置。

3.2Distillers

Distiller负责执行实际的蒸馏过程。目前实现了以下的distillers:

  • BasicDistiller: 提供单模型单任务蒸馏方式。可用作测试或简单实验。
  • GeneralDistiller (常用): 提供单模型单任务蒸馏方式,并且支持中间层特征匹配,一般情况下推荐使用
  • MultiTeacherDistiller: 多教师蒸馏。将多个(同任务)教师模型蒸馏到一个学生模型上。暂不支持中间层特征匹配
  • MultiTaskDistiller:多任务蒸馏。将多个(不同任务)单任务教师模型蒸馏到一个多任务学生模型。
  • BasicTrainer:用于单个模型的有监督训练,而非蒸馏。可用于训练教师模型

3.3用户定义函数

蒸馏实验中,有两个组件需要由用户提供,分别是callbackadaptor :

3.3.1Callback

回调函数。在每个checkpoint,保存模型后会被distiller调用,并传入当前模型。可以借由回调函数在每个checkpoint评测模型效果。

3.3.2Adaptor

将模型的输入和输出转换为指定的格式,向distiller解释模型的输入和输出,以便distiller根据不同的策略进行不同的计算。在每个训练步,batch和模型的输出model_outputs会作为参数传递给adaptoradaptor负责重新组织这些数据,返回一个字典。

更多细节可参见完整文档中的说明。

4.FAQ

Q: 学生模型该如何初始化?

A: 知识蒸馏本质上是“老师教学生”的过程。在初始化学生模型时,可以采用随机初始化的形式(即完全不包含任何先验知识),也可以载入已训练好的模型权重。例如,从BERT-base模型蒸馏到3层BERT时,可以预先载入RBT3模型权重(中文任务)或BERT的前三层权重(英文任务),然后进一步进行蒸馏,避免了蒸馏过程的“冷启动”问题。我们建议用户在使用时尽量采用已预训练过的学生模型,以充分利用大规模数据预训练所带来的优势。

Q: 如何设置蒸馏的训练参数以达到一个较好的效果?

A: 知识蒸馏的比有标签数据上的训练需要更多的训练轮数与更大的学习率。比如,BERT-base上训练SQuAD一般以lr=3e-5训练3轮左右即可达到较好的效果;而蒸馏时需要以lr=1e-4训练30~50轮。当然具体到各个任务上肯定还有区别,我们的建议仅是基于我们的经验得出的,仅供参考

Q: 我的教师模型和学生模型的输入不同(比如词表不同导致input_ids不兼容),该如何进行蒸馏?

A: 需要分别为教师模型和学生模型提供不同的batch,参见完整文档中的 Feed Different batches to Student and Teacher, Feed Cached Values 章节。

Q: 我缓存了教师模型的输出,它们可以用于加速蒸馏吗?

A: 可以, 参见完整文档中的 Feed Different batches to Student and Teacher, Feed Cached Values 章节。

更多优质内容分享请关注公号:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。

标签:教师,NLP,蒸馏,训练,BERT,模型,知识,hidden
From: https://www.cnblogs.com/ting1/p/17612657.html

相关文章

  • 知识图:人工智能和数据科学的游戏规则改变者
    知识图谱已成为人工智能和数据科学中一种强大而通用的方法,用于记录结构化信息,以促进成功的数据检索、推理和推理。本文探讨了最先进的知识图谱,包括构造、表示、查询、嵌入、推理、对齐和融合。我们还讨论了知识图谱的许多应用,例如推荐引擎和问答系统。最后,为了为新的进展和研究机......
  • 知识图:人工智能和数据科学的游戏规则改变者
    [知识图谱]已成为人工智能和数据科学中一种强大而通用的方法,用于记录结构化信息,以促进成功的数据检索、推理和推理。本文探讨了最先进的知识图谱,包括构造、表示、查询、嵌入、推理、对齐和融合。我们还讨论了知识图谱的许多应用,例如推荐引擎和问答系统。最后,为了为新的进展和研究......
  • 知识图:人工智能和数据科学的游戏规则改变者
    [知识图谱]已成为人工智能和数据科学中一种强大而通用的方法,用于记录结构化信息,以促进成功的数据检索、推理和推理。本文探讨了最先进的知识图谱,包括构造、表示、查询、嵌入、推理、对齐和融合。我们还讨论了知识图谱的许多应用,例如推荐引擎和问答系统。最后,为了为新的进展和研究......
  • 知识图:人工智能和数据科学的游戏规则改变者
    [知识图谱]已成为人工智能和数据科学中一种强大而通用的方法,用于记录结构化信息,以促进成功的数据检索、推理和推理。本文探讨了最先进的知识图谱,包括构造、表示、查询、嵌入、推理、对齐和融合。我们还讨论了知识图谱的许多应用,例如推荐引擎和问答系统。最后,为了为新的进展和研究......
  • 拓展知识 启望未来 | 记内蒙古移动《AntDB ACA初级认证培训》活动
    炎炎六月,迎来了备受期待的“亚信科技AntDB数据库初级认证培训”活动。通过培训,希望内蒙古移动及项目组的伙伴们能够系统学习到国产数据库的核心知识,提升专业技能,为服务感知提升、运维团队培育注入新的活力。26号上午,首先由内蒙古移动智慧运维室王宏伟主任发表开幕式演讲,主要内容为......
  • 文件知识基础
    文件文件就是保存数据的地方,可以保存文本信息,图片,视频,声音等等文件流文件再程序中是以流的形式来操作的流:数据再数据源文件和程序内存之间经历的路径输入流:数据从数据源到程序内存的路径输出流:数据从程序内存到数据源的路径常见的文件操作1)创建文件1、Filefile1=newFile(Strin......
  • 每个.NET开发都应掌握的linq知识点
    LINQ是C#3.0引入的特性,让处理对象就像执行SQL语句一样简单,对于提高C#开发效率有革命性的作用。 对于每个.NET开发者来说,掌握C#的LINQ知识点是非常重要的。LINQ是C#的一个强大的特性,它为数据查询和操作提供了简洁、统一的语法,使得数据处理变得更加直观和灵活。以下是.NET开发者应......
  • 学习Node.js的基础知识和核心概念(全面)
    Node.js,这个神奇的技术,融合了前端与后端的力量,让JavaScript在服务器端发挥了异乎寻常的魔力。本文将通过代码和文字解释,全面介绍Node.js的特点,从异步非阻塞I/O到强大的模块系统,再到丰富的包管理和事件驱动编程,一步步揭开Node.js的神秘面纱。公众号:Code程序人生,个人网站:https://crea......
  • Mitsubishi 三菱FXPLC基础 | 时钟处理指令知识分享
    谈及时钟和定时器,想来大家都不陌生,就如我,每天都要定三个闹钟才起得了床去上班,而且我敢肯定,不止我一个人。关于时钟和定时器,我在之前的文章就有分享过一二,但当时并没有讲到相关的指令,不是我不想讲,而是时机未到。然后我掐指一算,现在时机正好!在三菱FXPLC中,可以用于表示时间的有......
  • DataWhale NLP第二期 第一次打卡
    理解赛题,跑通竞赛实践全流程跑通实践基线Baseline,获得自己的成绩提交任务一打卡,查看个人成绩排行榜赛题理解赛题链接本赛题要求构建一个文本分类器,来区分真实对话和由AI产生的对话,训练的数据包括一系列真实对话和ChatGPT生成的对话样本,参赛选手需要设计并训练一个模型,使其......