首页 > 其他分享 >Random Walk Problem

Random Walk Problem

时间:2023-08-06 23:11:21浏览次数:51  
标签:distance random frac sum Random walk Problem Walk dp

Notice: This article is just a short discussion on Random Walk problem, I compute \(E(X^2)\) in this article. After I read some materials, from a programmer's perspective, I have found that this problem is not just simple as I think, and it's not simple to compute \(E(\lvert X \rvert)\).

For more details, please read:

What is a Random Walk problem?

Refer to: https://en.wikipedia.org/wiki/Random_walk

In mathematics, a random walk is a random process that describes a path that consists of a succession of random steps on some mathematical space.

And we want to know the "distance" (value of mathematical expectation) between the object and the origin position after \(n\) steps.

1D Random Walk

The inferences of expectation formula:

  • E(aX+bY) = E(aX) + E(bY) holds even if X, Y are not independent.
  • E(XY) = E(X) * E(Y) holds if and only if X, Y are independent.

An elementary example of a random walk is the random walk on the integer number line \(\mathbb{Z}\) , which starts at 0 and at each step moves +1 or -1 with equal probability.

  • To define this walk formally, take independent random variables \({ Z_{1},Z_{2},\dots }\), where each variable is either 1 or −1, with a 50% probability for either value.

  • Set ${ S_{0}=0} $ and \({ S_{n}=\sum _{j=1}^{n}Z_{j}}\).

  • The series \({ \{S_{n}\}}\) is called the simple 1D-random walk on \(\mathbb{Z}\).

  • This series (the sum of the sequence of −1 and 1) gives the net distance walked, if each part of the walk is of length one. Obviously, the expectation \(E(S_{n})\) is zero. That is

    \[E(S_{n})=\sum _{j=1}^{n}E(Z_{j})=0 \]

Using the independence of the random variables and the fact that \(E(Z_{i}^{2})=1\), shows that:

\[E(S_{n}^{2})=\sum _{i=1}^{n}E(Z_{i}^{2})+2\sum _{1\leq i<j\leq n}E(Z_{i}Z_{j})=n \]

This hints that \(E(|S_{n}|)\), the expected absolute distance after \(n\) steps, should be \(O(\sqrt{n})\).

Actually,

\[\lim_{n \to \infty} \frac{E(\lvert S_n \rvert)}{\sqrt{n}} = \sqrt{\frac{2}{\pi}} \]

That is, when \(n\) gets large enough, \(E(\lvert S_n \rvert)\) is close to \(\sqrt{2n / \pi}\) .

We should remember this inference: in 1D random walk, the expectation of square of Euler distance is:

\[E(\text{dis}^2) = n \]

where \(n\) denote the object have walked \(n\) steps.

This conclusion will be used in the comming section "2D Random Walk".

2D Random Walk

  • Suppose there is a 2D plane, and there is a robot at the original position (0, 0).
  • Each step, the robot can walk ONE unit toward one of the 4 directions.
  • Find the expectation of the distance (Euler distance) from the robot's position to the origin (0, 0), after n steps.

Math Solution

The movements on X-axis and Y-axis are independent, i.e. the robot can move n / 2 steps along both X-axis and Y-axix, respectively.

\[E(\text{dis}^2) = E(X^2) + E(Y^2) = \frac{n}{2} + \frac{n}{2} = n \]

DP Solution

We can solve this problme via dynamic programming.

Suppose given n, then the robot can mostly reach positions in a grid with size (2n + 1) * (2n + 1).

Let N = 2 * n + 1, and suppose the original position of robot is (N/2, N/2) = (n, n).

Let dp[k, i, j] denote the number of possible paths to reach (i, j) in k seconds (i.e. the robot is allowed to walk k steps).

Then we can have the state equation:

\[dp[k, i, j] = \sum_{}{dp[k-1, i + dx, j + dy]} \]

where dx, dy denote the 4 directions around (i, j).

The initial conditions is:

dp[0, N/2, N/2] = 1

How can we get the expectation distance after n steps?

\[\text{E}_n = \frac{\sum_{i, j}({dp[n, i, j] \cdot \text{distance}(i, j)})}{\sum_{i, j}{dp[n, i, j]}} \]

where distance(i, j) denote the distance from (i, j) to original position (N/2, N/2).

By the way, the probability of reaching position (i, j) is

\[P_{(i, j)} = \frac{dp[n, i, j]}{\sum_{i, j}dp[n, i, j]} \]

Here is the source code.

using vec = vector<int>;
using vec2 = vector<vec>;
using vec3 = vector<vec2>;
using pair_t = pair<int, int>;
/* The function to define distance from (x0, y0) to (x1, y1),
 * here we define it as Euler distance (or its square value).
 */
double dis(int x0, int y0, int x1, int y1)
{
    // return sqrt(pow(abs(x0 - x1), 2) + pow(abs(y0 - y1), 2));
    return pow(abs(x0 - x1), 2) + pow(abs(y0 - y1), 2);
}

bool valid(int idx, int limit)
{
    return 0 <= idx && idx < limit;
}
uint64_t getdp(vec3 &dp, int k, int i, int j)
{
    int n = dp.size(), N = dp[0].size();
    return valid(k, n) && valid(i, N) && valid(j, N) ? dp[k][i][j] : 0;
}

/* Return the expectation E(dis^2). */
double RandomWalk2D(int n)
{
    // If the object can be walk toward 8 directions, use this line of code
    // vector<pair_t> dirs = {{-1, -1}, {-1, 0}, {-1, 1}, {0, -1}, {0, 1}, {1, -1}, {1, 0}, {1, 1}};
    vector<pair_t> dirs = {{-1, 0}, {1, 0}, {0, 1}, {0, -1}};
    int N = 2 * n + 1;
    int x0 = n, y0 = n;
    vec3 dp(n + 1, vec2(N, vec(N, 0)));
    dp[0][x0][y0] = 1;

    for (int k = 1; k <= n; ++k)
        for (int i = 0; i < N; ++i)
            for (int j = 0; j < N; ++j)
                for (auto [dx, dy] : dirs)
                    dp[k][i][j] += getdp(dp, k - 1, i + dx, j + dy);

    double total = 0, exp = 0;
    for (int i = 0; i < N; ++i)
    {
        for (int j = 0; j < N; ++j)
        {
            total += dp[n][i][j];
            exp += dp[n][i][j] * dis(x0, y0, i, j);
        }
    }
    return exp / total;
}

int main()
{
    for (int n = 1; n <= 10; ++n)
    {
        double res = RandomWalk2D(n);
        cout << res << '\n';
        assert((int)(res) == n);  // the "distance" is defined as square Euler distance
    }
}

Follow Up

If in each time, the robot is allowed to walk one unit toward one of the 8 directions (shown as follows), what is the expectation \(E(\text{dis}^2)\) ?

X X X
X O X
X X X

Math Solution

Let \(X, Y\) denote the movement on X-axis and Y-axis, respectively, And \(Z\) denote the movement along two diagonals.

Obviously, they are independent. Then we have

\[E(\text{dis}^2) = E(X^2) + E(Y^2) + E(Z^2) = \frac{2}{8}n + \frac{2}{8}n + \frac{4}{8} \cdot 2n = \frac{3}{2}n \]

DP Solution

To verify the formula here, we can make some modifications on above code.

Let dirs become:

vector<pair_t> dirs = {
    {-1, -1}, {-1, 0}, {-1, 1}, 
    {0, -1}, {0, 1}, 
    {1, -1}, {1, 0}, {1, 1}
};

For n in range of [1, 10], it will output:

1 1.5
2 3
3 4.5
4 6
5 7.5
6 9
7 10.5
8 12
9 13.5
10 15

Similar leetcode problem: 688. Knight Probability in Chessboard

标签:distance,random,frac,sum,Random,walk,Problem,Walk,dp
From: https://www.cnblogs.com/sinkinben/p/17610320.html

相关文章

  • An Easy Problem(二分)
    GDCPCA题原题链接:https://cpc.csgrandeur.cn/csgoj/problemset/problem?pid=1168类似的题目及视频解释链接:题目:https://www.acwing.com/problem/content/description/4083/相关视频讲解https://www.acwing.com/video/3568/本题可以转化成二维数组,每一行数都是呈现递增的,所以......
  • 20 re/collection/time/random模块
    re模块补充说明importreret=re.findall('a(b)c','abcabcabcabc')#优先显示括号内东西print(ret)#['b','b','b','b']ret=re.findall('a(?:b)c','abcabcabcabc')#?:表示忽视括号print(r......
  • 链路追踪之选型Zipkin、Pinpoint、SkyWalking、CAT、jaeger
    https://www.pianshen.com/article/51782363885/ https://blog.csdn.net/A123638/article/details/123117142......
  • 【每日一题】Problem 653B. Bear and Compressing
    原题解决思路根据当前字符串的首字符进行深度递归即可误区字符串是从头开始匹配的,因此只需要对首字符进行替换#include<bits/stdc++.h>intdfs(std::map<char,std::vector<std::string>>&r,charc,intn,inttarget){if(n==target){retu......
  • skywalking 监控告警处理和外挂配置
    1、添加告警配置vimconfigs/alarm-settings.ymldingtalkHooks:textTemplate:|-{"msgtype":"text","text":{"content":"ApacheSkyWalkingAlarm:\n%s."}}webhooks:......
  • skywalking快速上手
    Skywalking官网(SW快速上手)Skywalking本地安装(windows为例)skywalking本次使用的是apache-skywalking-apm-bin-es7(https://archive.apache.org/dist/skywalking),打开文件夹,打开目录bin/.bat是windows启动。点击之后会出钱两个command,这个时候就启动成功了。打开loca......
  • 【每日一题】Problem 626B. Cards
    原题解决思路找规律对于n:0:0形式的,只有一种结果,是第一个元素对于m:n:t形式的,三个元素都是可能的对于1:n:0形式的,可以发现,第二种元素是永远不可能的1:n:0可以变成1:n-1:0和0:n-1:1,而这本质上还是1:n:0最终,该形式只有两种倒数第二形态,1:2:0,1:1:0(不考虑一......
  • 条件随机场(conditional random field,CRF)模型初探
    条件随机场(conditionalrandomfield,CRF)模型初探1.条件随机场,一种特殊的概率图模型结构我们知道,从图结构角度来说,概率图模型可以分为以下两种:基于有向图的贝叶斯网:具备有向依赖性基于无向图的马尔科夫网:具备无向依赖性条件随机场是一个在变量子集上存在有......
  • 【AltWalker】模型驱动:轻松实现自动化测试用例的自动生成和组织执行
    模型驱动的自动化测试模型驱动的自动化测试(Model-BasedTesting,后文中我们将简称为MBT)是一种软件测试方法,它将系统的行为表示为一个或多个模型,然后从模型中自动生成和执行测试用例。这种方法的核心思想是将测试过程中的重点从手动编写测试用例转移到创建和维护描述系统行为的模......
  • UUID类randomUUID()方法
    1、randomUUID()方法用于返回类型4UUID,它由伪随机数生成器构造//uuid文件名通用唯一识别码Stringuuid=UUID.randomUUID().toString(); ......