首页 > 其他分享 >PyTorch 中的多 GPU 训练和梯度累积作为替代方案

PyTorch 中的多 GPU 训练和梯度累积作为替代方案

时间:2023-07-31 20:11:58浏览次数:43  
标签:__ 梯度 self args PyTorch GPU size

动动发财的小手,点个赞吧!

本文中,我们将首先了解数据并行(DP)和分布式数据并行(DDP)算法之间的差异,然后我们将解释什么是梯度累积(GA),最后展示 DDP 和 GA 在 PyTorch 中的实现方式以及它们如何导致相同的结果。

简介

训练深度神经网络 (DNN) 时,一个重要的超参数是批量大小。通常,batch size 不宜太大,因为网络容易过拟合,但也不宜太小,因为这会导致收敛速度慢。

当处理高分辨率图像或占用大量内存的其他类型的数据时,假设目前大多数大型 DNN 模型的训练都是在 GPU 上完成的,根据可用 GPU 的内存,拟合小批量大小可能会出现问题。正如我们所说,因为小批量会导致收敛速度慢,所以我们可以使用三种主要方法来增加有效批量大小:

  1. 使用多个小型 GPU 在小批量上并行运行模型 — DP 或 DDP 算法
  2. 使用更大的 GPU(昂贵)
  3. 通过多个步骤累积梯度

现在让我们更详细地了解 1. 和 3. — 如果您幸运地拥有一个大型 GPU,可以在其上容纳所需的所有数据,您可以阅读 DDP 部分,并在完整代码部分中查看它是如何在 PyTorch 中实现的,从而跳过其余部分。

假设我们希望有效批量大小为 30,但每个 GPU 上只能容纳 10 个数据点(小批量大小)。我们有两种选择:数据并行或分布式数据并行:

数据并行性 (DP)

首先,我们定义主 GPU。然后,我们执行以下步骤:

  1. 将 10 个数据点(小批量)和模型的副本从主 GPU 移动到其他 2 个 GPU
  2. 在每个 GPU 上进行前向传递并将输出传递给主 GPU
  3. 在主 GPU 上计算总损失,然后将损失发送回每个 GPU 以计算参数的梯度
  4. 将梯度发送回Master GPU(这些是所有训练示例的梯度平均值),将它们相加得到整批30个的平均梯度
  5. 更新主 GPU 上的参数并将这些更新发送到其他 2 个 GPU 以进行下一次迭代

这个过程存在一些问题和低效率:

  • 数据-从主 GPU 传递,然后在其他 GPU 之间分配。此外,主 GPU 的利用率高于其他 GPU,因为总损失的计算和参数更新发生在主 GPU 上
  • 我们需要在每次迭代时同步其他 GPU 上的模型,这会减慢训练速度

分布式数据并行 (DDP)

引入分布式数据并行是为了改善数据并行算法的低效率。我们仍然采用与之前相同的设置 — 每批 30 个数据点,使用 3 个 GPU。差异如下:

  1. 它没有主 GPU
  2. 因为我们不再拥有主 GPU,所以我们直接从磁盘/RAM 以非重叠方式并行加载每个 GPU 上的数据 — DistributedSampler 为我们完成这项工作。在底层,它使用本地等级 (GPU id) 在 GPU 之间分配数据 - 给定 30 个数据点,第一个 GPU 将使用点 [0, 3, 6, ... , 27],第二个 GPU [1, 4, 7, .., 28] 和第三个 GPU [2, 5, 8, .. , 29]
n_gpu = 3
for i in range(n_gpu):
  print(np.arange(30)[i:30:n_gpu])
  1. 前向传递、损失计算和后向传递在每个 GPU 上独立执行,异步减少梯度计算平均值,然后在所有 GPU 上进行更新

由于DDP相对于DP的优点,目前优先使用DDP,因此我们只展示DDP的实现。

梯度累积

如果我们只有一个 GPU 但仍想使用更大的批量大小,另一种选择是累积一定数量的步骤的梯度,有效地累积一定数量的小批量的梯度,从而增加有效的批量大小。从上面的例子中,我们可以通过 3 次迭代累积 10 个数据点的梯度,以达到与我们在有效批量大小为 30 的 DDP 训练中描述的结果相同的结果。

DDP流程代码

下面我将仅介绍与 1 GPU 代码相比实现 DDP 时的差异。完整的代码可以在下面的一些部分找到。首先我们初始化进程组,允许不同进程之间进行通信。使用 int(os.environ[“LOCAL_RANK”])
我们检索给定进程中使用的 GPU。

init_process_group(backend="nccl")
device = int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(device)

然后,我们需要将模型包装在 DistributedDataParallel 中,以支持多 GPU 训练。

model = NeuralNetwork(args.data_size) 
model = model.to(device) 
 
if args.distributed:
  model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[device])

最后一部分是定义我在 DDP 部分中提到的 DistributedSampler。

sampler = torch.utils.data.DistributedSampler(dataset)

培训的其余部分保持不变 - 我将在本文末尾包含完整的代码。

梯度累积代码

当反向传播发生时,在我们调用 loss.backward() 后,梯度将存储在各自的张量中。实际的更新发生在调用 optimizationr.step() 时,然后使用 optimizationr.zero_grad() 将张量中存储的梯度设置为零,以运行反向传播和参数更新的下一次迭代。

因此,为了累积梯度,我们调用 loss.backward() 来获取我们需要的梯度累积数量,而不将梯度设置为零,以便它们在多次迭代中累积,然后我们对它们进行平均以获得累积梯度迭代中的平均梯度(loss = loss/ACC_STEPS)。之后我们调用optimizer.step()并将梯度归零以开始下一次梯度累积。在代码中:

ACC_STEPS = dist.get_world_size() # == number of GPUs
# iterate through the data
for i, (idxs, row) in enumerate(loader):
  loss = model(row)  
  # scale loss according to accumulation steps
  loss = loss/ACC_STEPS
  loss.backward()
  # keep accumualting gradients for ACC_STEPS
  if ((i + 1) % ACC_STEPS == 0):
    optimizer.step()  
    optimizer.zero_grad()

代码

import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"
print(os.environ["CUDA_VISIBLE_DEVICES"])

import torch
import torch.nn as nn
from torch.utils.data import DataLoader, Dataset, Sampler
import argparse
import torch.optim as optim 
import numpy as np
import random
import torch.backends.cudnn as cudnn
import torch.nn.functional as F

from torch.distributed import init_process_group
import torch.distributed as dist

class data_set(Dataset):
    
    def __init__(self, df):
        self.df = df
        
    def __len__(self):
        return len(self.df)
    
    def __getitem__(self, index):    
        
        sample = self.df[index]
        return index, sample
    
class NeuralNetwork(nn.Module):
    def __init__(self, dsize):
        super().__init__()
        self.linear =  nn.Linear(dsize, 1, bias=False)
        self.linear.weight.data[:] = 1.

    def forward(self, x):
        x = self.linear(x)
        loss = x.sum()
        return loss
    
            
class DummySampler(Sampler):
    def __init__(self, data, batch_size, n_gpus=2):
        self.num_samples = len(data)
        self.b_size = batch_size
        self.n_gpus = n_gpus

    def __iter__(self):
        ids = []
        for i in range(0, self.num_samples, self.b_size * self.n_gpus):
            ids.append(np.arange(self.num_samples)[i: i + self.b_size*self.n_gpus :self.n_gpus])
            ids.append(np.arange(self.num_samples)[i+1: (i+1) + self.b_size*self.n_gpus :self.n_gpus])
        return iter(np.concatenate(ids))

    def __len__(self):
        # print ('\tcalling Sampler:__len__')
        return self.num_samples

    

        
def main(args=None):
    
    d_size = args.data_size

    if args.distributed:
        init_process_group(backend="nccl")
        device = int(os.environ["LOCAL_RANK"])
        torch.cuda.set_device(device)
    else:
        device = "cuda:0"

    # fix the seed for reproducibility
    seed = args.seed
        
        
    torch.manual_seed(seed)
    np.random.seed(seed)
    random.seed(seed)
    cudnn.benchmark = True
    
    # generate data
    data = torch.rand(d_size, d_size)
    
    model = NeuralNetwork(args.data_size)    
    model = model.to(device)  
    
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[device])
        
    optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
    dataset = data_set(data)

    if args.distributed:
        sampler = torch.utils.data.DistributedSampler(dataset, shuffle=False)
    else:
        # we define `DummySampler` for exact reproducibility with `DistributedSampler`
        # which splits the data as described in the article. 
        sampler = DummySampler(dataset, args.batch_size)
        
    loader = DataLoader(
                dataset,
                batch_size=args.batch_size,
                num_workers=0,
                pin_memory=True,
                sampler=sampler,
                shuffle=False,
                collate_fn=None,
            )          
    
    if not args.distributed:
        grads = []
    
    # ACC_STEPS same as GPU as we need to divide the loss by this number
    # to obtain the same gradient as from multiple GPUs that are 
    # averaged together
    ACC_STEPS = args.acc_steps 
    optimizer.zero_grad()
    
    for epoch in range(args.epochs):
        
        if args.distributed:
            loader.sampler.set_epoch(epoch)
            
        for i, (idxs, row) in enumerate(loader):

            if args.distributed:
                optimizer.zero_grad()
            
            row = row.to(device, non_blocking=True) 
            
            if args.distributed:
                rank = dist.get_rank() == 0
            else:
                rank = True
            
            loss = model(row)  
            
            if args.distributed:
                # does average gradients automatically thanks to model wrapper into 
                # `DistributedDataParallel`
                loss.backward()
            else:
                # scale loss according to accumulation steps
                loss = loss/ACC_STEPS
                loss.backward()
            
            if i == 0 and rank:
                print(f"Epoch {epoch} {100 * '='}")

            if not args.distributed:
                if (i + 1) % ACC_STEPS == 0: # only step when we have done ACC_STEPS
                    # acumulate grads for entire epoch
                    optimizer.step()  
                    optimizer.zero_grad()
            else:
                optimizer.step() 

                
        if not args.distributed and args.verbose:
            print(100 * "=")
            print("Model weights : ", model.linear.weight)
            print(100 * "=")
        elif args.distributed and args.verbose and rank:
            print(100 * "=")
            print("Model weights : ", model.module.linear.weight)
            print(100 * "=")

    


if __name__ == "__main__":
    
    
    parser = argparse.ArgumentParser()
    parser.add_argument('--distributed', action='store_true',)
    parser.add_argument('--seed', default=0, type=int) 
    parser.add_argument('--epochs', default=2, type=int) 
    parser.add_argument('--batch_size', default=4, type=int) 
    parser.add_argument('--data_size', default=16, type=int) 
    parser.add_argument('--acc_steps', default=3, type=int) 
    parser.add_argument('--verbose', action='store_true',)
    
    args = parser.parse_args()
    
    print(args)

    main(args)

总结

在本文中,我们简要介绍并直观地介绍了 DP、DDP 算法和梯度累积,并展示了如何在没有多个 GPU 的情况下增加有效批量大小。需要注意的一件重要事情是,即使我们获得相同的最终结果,使用多个 GPU 进行训练也比使用梯度累积要快得多,因此如果训练速度很重要,那么使用多个 GPU 是加速训练的唯一方法。

本文由mdnice多平台发布

标签:__,梯度,self,args,PyTorch,GPU,size
From: https://www.cnblogs.com/swindler/p/17594364.html

相关文章

  • 梯度消失:深度学习的挑战
    介绍深度学习使计算机能够从大量数据中学习并做出复杂的决策,从而彻底改变了人工智能领域。这一成功在很大程度上归功于深度神经网络的发展,它能够从数据中学习分层表示。然而,这些网络面临着一个被称为“梯度消失”的重大挑战,这可能会阻碍它们的训练和表现。在本文中,我们将探讨梯度......
  • Pytorch 最全入门介绍,Pytorch入门看这一篇就够了
    本文通过详细且实践性的方式介绍了PyTorch的使用,包括环境安装、基础知识、张量操作、自动求导机制、神经网络创建、数据处理、模型训练、测试以及模型的保存和加载。1.Pytorch简介在这一部分,我们将会对Pytorch做一个简单的介绍,包括它的历史、优点以及使用场景等。1.1Pyt......
  • Linux查看显卡 GPU信息
    1.Linux查看显卡信息:1.1查询显卡信息lspci|grep-ivga前边的序号“04:00.0″是显卡的代号ASPEEDTechnology,Inc.ASPEEDGraphicsFamily即为GPU型号1.2查看指定显卡的详细信息用以下指令:lspci-v-s04:00.01.3使用nvidiaGPU可以:lspci|grep-invidia......
  • X86架构CPU下Ubuntu系统环境源码编译pytorch-gpu-2.0.1版本
    本文操作步骤与aarch64架构CPU下Ubuntu系统环境源码编译pytorch-gpu-2.0.1版本大致相同,只是CPU架构不同而已,因此这里只记录不同的地方。 重点:一个个人心得,那就是要编译pytorch源码最好是选择docker环境,因为这种环境下配置比较纯净,一定要避免那种自己使用多年的Linux系统,那种......
  • pytorch-合并与分割
    Mergeorsplit▪Cat(合并)▪Stack(合并)▪Split(拆分)▪Chunk(拆分)合并cat这个就是合并两个tensor比如说有两个班级的成绩单,一个是1-4班的,一个是5-9班的,我们现在需要合并这两份成绩单。▪Statisticsaboutscores▪[class1-4,students,scores]▪[class5-9,stud......
  • pytorch索引与切片
    indexinga=torch.randn(4,3,28,28)a[0].shape#torch.Size([3,28,28])a[0,0].shape#torch.Size([28,28])a[0,0,2,4]#tensor(0.6574)selectfirst/lastN这个a可以看成一个图片:[batch,RBG,h,w]a.shape#torch.Size([4,3,28,28])a[:2].shape#torch.Size......
  • 因子分解机介绍和PyTorch代码实现
    因子分解机(FactorizationMachines,简称FM)是一种用于解决推荐系统、回归和分类等机器学习任务的模型。它由SteffenRendle于2010年提出,是一种基于线性模型的扩展方法,能够有效地处理高维稀疏数据,并且在处理特征组合时表现出色。它是推荐系统的经典模型之一,并且模型简单、可解释性强,......
  • 图注意力网络论文详解和PyTorch实现
    前言 图神经网络(gnn)是一类功能强大的神经网络,它对图结构数据进行操作。它们通过从节点的局部邻域聚合信息来学习节点表示(嵌入)。这个概念在图表示学习文献中被称为“消息传递”。本文转载自P**nHub兄弟网站作者|EbrahimPichka仅用于学术分享,若侵权请联系删除欢迎关注公......
  • PyTorch的数据类型
    python和pytorch中的类型对比:我们可以发现pytorch中每中类型后面都有一个Tensor。但是很遗憾PyTorch没有String类型。我们在做NLP的时候会遇到String类型处理的问题,我们会将string转化问数值:one-hot[0,1,0,0,....]Embeddingword2vecglove1Datatype我们需要注......
  • 基于wsl2在container中利用conda安装pytorch环境
    ###一、利用conda创建一个新的环境参考命令condacreate-nENV_NAMEpython=X.X•-nENV_NAME指定环境名称•python=X.X指定要创建的Python版本,比如python=3.6使用命令:condacreate-npytorch1.13python=3.8参考资料-Anacondaconda常用命令:从入门到精通:https://......