首页 > 其他分享 >设备驱动-10.中断子系统-4.3中断线程化处理-threaded_irq

设备驱动-10.中断子系统-4.3中断线程化处理-threaded_irq

时间:2023-07-29 18:44:49浏览次数:48  
标签:__ 10 threaded thread 中断 irq int key gpio

1. threaded_irq引入

工作队列用起来挺简单,但是它有一个缺点:工作队列中有多个 work,前一个 work 没处理完会影响后面的 work执行,导致后面的work没法快速响应。那么可以再内核自己创建一个线程来单独处理,不跟别的 work 凑在一块了。比如在 Linux 系统中,对于存储设备比如 SD/TF 卡,它的驱动程序就是这样做的,它有自己的内核线程。用kthread_creat创建内核线程。
对于中断处理,还有另一种方法:threaded irq,线程化的中断处理。中断的处理仍然可以认为分为上半部、下半部。上半部用来处理紧急的事情,下半部用一个内核线程来处理,这个内核线程专用于这个中断。

2. threaded_irq使用

1异常中断引入 前面已经提到了threaded_irq。
你可以只提供 thread_fn,内核会提供默认的上半部处理函数irq_default_primary_handler,该函数只是返回一个IRQ_WAKE_THREAD。发生中断时,系统会立刻调用 handler 函数,然后唤醒某个内核线程,内核线程再来执行thread_fn 函数。
你也可以既提供handler函数,也提供thread_fn函数。等硬件中断到来,先执行handler函数,handler函数中返回IRQ_WAKE_THREAD去唤醒中断线程函数thread_fn。

image

extern int __must_check
devm_request_threaded_irq(struct device *dev, unsigned int irq,
			  irq_handler_t handler, irq_handler_t thread_fn,
			  unsigned long irqflags, const char *devname,
			  void *dev_id);
extern void free_irq(unsigned int, void *);

3. threaded_irq实例

驱动代码
#include <linux/module.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/mutex.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/tty.h>
#include <linux/kmod.h>
#include <linux/gfp.h>
#include <linux/gpio/consumer.h>
#include <linux/platform_device.h>
#include <linux/of_gpio.h>
#include <linux/of_irq.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/slab.h>
#include <linux/fcntl.h>
#include <linux/timer.h>
#include <linux/workqueue.h>
#include <asm/current.h>

struct gpio_key{
	int gpio;
	struct gpio_desc *gpiod;
	int flag;
	int irq;
	struct timer_list key_timer;
	struct tasklet_struct tasklet;
	struct work_struct work;
} ;

static struct gpio_key *gpio_keys_100ask;

/* 主设备号                                                                 */
static int major = 0;
static struct class *gpio_key_class;

/* 环形缓冲区 */
#define BUF_LEN 128
static int g_keys[BUF_LEN];
static int r, w;

struct fasync_struct *button_fasync;

#define NEXT_POS(x) ((x+1) % BUF_LEN)

static int is_key_buf_empty(void)
{
	return (r == w);
}

static int is_key_buf_full(void)
{
	return (r == NEXT_POS(w));
}

static void put_key(int key)
{
	if (!is_key_buf_full())
	{
		g_keys[w] = key;
		w = NEXT_POS(w);
	}
}

static int get_key(void)
{
	int key = 0;
	if (!is_key_buf_empty())
	{
		key = g_keys[r];
		r = NEXT_POS(r);
	}
	return key;
}

static DECLARE_WAIT_QUEUE_HEAD(gpio_key_wait);

static void key_timer_expire(unsigned long data)
{
	/* data ==> gpio */
	struct gpio_key *gpio_key = data;
	int val;
	int key;

	val = gpiod_get_value(gpio_key->gpiod);


	printk("key_timer_expire key %d %d\n", gpio_key->gpio, val);
	key = (gpio_key->gpio << 8) | val;
	put_key(key);
	wake_up_interruptible(&gpio_key_wait);
	kill_fasync(&button_fasync, SIGIO, POLL_IN);
}

static void key_tasklet_func(unsigned long data)
{
	/* data ==> gpio */
	struct gpio_key *gpio_key = data;
	int val;
	int key;

	val = gpiod_get_value(gpio_key->gpiod);


	printk("key_tasklet_func key %d %d\n", gpio_key->gpio, val);
}

static void key_work_func(struct work_struct *work)
{
	struct gpio_key *gpio_key = container_of(work, struct gpio_key, work);
	int val;

	val = gpiod_get_value(gpio_key->gpiod);

	printk("key_work_func: the process is %s pid %d\n",current->comm, current->pid);	
	printk("key_work_func key %d %d\n", gpio_key->gpio, val);
}

static ssize_t gpio_key_drv_read (struct file *file, char __user *buf, size_t size, loff_t *offset)
{
	//printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
	int err;
	int key;

	if (is_key_buf_empty() && (file->f_flags & O_NONBLOCK))
		return -EAGAIN;
	wait_event_interruptible(gpio_key_wait, !is_key_buf_empty());
	key = get_key();
	err = copy_to_user(buf, &key, 4);
	
	return 4;
}

static unsigned int gpio_key_drv_poll(struct file *fp, poll_table * wait)
{
	printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
	poll_wait(fp, &gpio_key_wait, wait);
	return is_key_buf_empty() ? 0 : POLLIN | POLLRDNORM;
}

static int gpio_key_drv_fasync(int fd, struct file *file, int on)
{
	if (fasync_helper(fd, file, on, &button_fasync) >= 0)
		return 0;
	else
		return -EIO;
}

static struct file_operations gpio_key_drv = {
	.owner	 = THIS_MODULE,
	.read    = gpio_key_drv_read,
	.poll    = gpio_key_drv_poll,
	.fasync  = gpio_key_drv_fasync,
};

static irqreturn_t gpio_key_isr(int irq, void *dev_id)
{
	struct gpio_key *gpio_key = dev_id;
	//printk("gpio_key_isr key %d irq happened\n", gpio_key->gpio);
	tasklet_schedule(&gpio_key->tasklet);
	mod_timer(&gpio_key->key_timer, jiffies + HZ/50);
	schedule_work(&gpio_key->work);
	return IRQ_WAKE_THREAD;
}

static irqreturn_t gpio_key_thread_func(int irq, void *data)
{
	struct gpio_key *gpio_key = data;
	int val;

	val = gpiod_get_value(gpio_key->gpiod);
	printk("gpio_key_thread_func: the process is %s pid %d\n",current->comm, current->pid);	
	printk("gpio_key_thread_func key %d %d\n", gpio_key->gpio, val);
	
	return IRQ_HANDLED;
}

static int gpio_key_probe(struct platform_device *pdev)
{
	int err;
	struct device_node *node = pdev->dev.of_node;
	int count;
	int i;
	enum of_gpio_flags flag;
		
	printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);

	count = of_gpio_count(node);
	if (!count)
	{
		printk("%s %s line %d, there isn't any gpio available\n", __FILE__, __FUNCTION__, __LINE__);
		return -1;
	}

	gpio_keys_100ask = kzalloc(sizeof(struct gpio_key) * count, GFP_KERNEL);
	for (i = 0; i < count; i++)
	{		
		gpio_keys_100ask[i].gpio = of_get_gpio_flags(node, i, &flag);
		if (gpio_keys_100ask[i].gpio < 0)
		{
			printk("%s %s line %d, of_get_gpio_flags fail\n", __FILE__, __FUNCTION__, __LINE__);
			return -1;
		}
		gpio_keys_100ask[i].gpiod = gpio_to_desc(gpio_keys_100ask[i].gpio);
		gpio_keys_100ask[i].flag = flag & OF_GPIO_ACTIVE_LOW;
		gpio_keys_100ask[i].irq  = gpio_to_irq(gpio_keys_100ask[i].gpio);

		setup_timer(&gpio_keys_100ask[i].key_timer, key_timer_expire, &gpio_keys_100ask[i]);
		gpio_keys_100ask[i].key_timer.expires = ~0;
		add_timer(&gpio_keys_100ask[i].key_timer);

		tasklet_init(&gpio_keys_100ask[i].tasklet, key_tasklet_func, &gpio_keys_100ask[i]);

		INIT_WORK(&gpio_keys_100ask[i].work, key_work_func);
	}

	for (i = 0; i < count; i++)
	{
		//err = request_irq(gpio_keys_100ask[i].irq, gpio_key_isr, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, "100ask_gpio_key", &gpio_keys_100ask[i]);
		err = request_threaded_irq(gpio_keys_100ask[i].irq, gpio_key_isr, gpio_key_thread_func, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, "100ask_gpio_key", &gpio_keys_100ask[i]);
	}

	major = register_chrdev(0, "100ask_gpio_key", &gpio_key_drv);  /* /dev/gpio_key */

	gpio_key_class = class_create(THIS_MODULE, "100ask_gpio_key_class");
	if (IS_ERR(gpio_key_class)) {
		printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
		unregister_chrdev(major, "100ask_gpio_key");
		return PTR_ERR(gpio_key_class);
	}
	device_create(gpio_key_class, NULL, MKDEV(major, 0), NULL, "100ask_gpio_key"); /* /dev/100ask_gpio_key */
        
    return 0;
    
}

static int gpio_key_remove(struct platform_device *pdev)
{
	//int err;
	struct device_node *node = pdev->dev.of_node;
	int count;
	int i;

	device_destroy(gpio_key_class, MKDEV(major, 0));
	class_destroy(gpio_key_class);
	unregister_chrdev(major, "100ask_gpio_key");

	count = of_gpio_count(node);
	for (i = 0; i < count; i++)
	{
		free_irq(gpio_keys_100ask[i].irq, &gpio_keys_100ask[i]);
		del_timer(&gpio_keys_100ask[i].key_timer);
		tasklet_kill(&gpio_keys_100ask[i].tasklet);
	}
	kfree(gpio_keys_100ask);
    return 0;
}


static const struct of_device_id ask100_keys[] = {
    { .compatible = "100ask,gpio_key" },
    { },
};

static struct platform_driver gpio_keys_driver = {
    .probe      = gpio_key_probe,
    .remove     = gpio_key_remove,
    .driver     = {
        .name   = "100ask_gpio_key",
        .of_match_table = ask100_keys,
    },
};

static int __init gpio_key_init(void)
{
    int err;
	printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
    err = platform_driver_register(&gpio_keys_driver); 
	return err;
}

static void __exit gpio_key_exit(void)
{
	printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
    platform_driver_unregister(&gpio_keys_driver);
}

module_init(gpio_key_init);
module_exit(gpio_key_exit);
MODULE_LICENSE("GPL");

app代码
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <poll.h>
#include <signal.h>
static int fd;

/*
 * ./button_test /dev/100ask_button0
 *
 */
int main(int argc, char **argv)
{
	int val;
	struct pollfd fds[1];
	int timeout_ms = 5000;
	int ret;
	int	flags;
	int i;

	if (argc != 2) 
	{
		printf("Usage: %s <dev>\n", argv[0]);
		return -1;
	}

	fd = open(argv[1], O_RDWR | O_NONBLOCK);
	if (fd == -1)
	{
		printf("can not open file %s\n", argv[1]);
		return -1;
	}
	for (i = 0; i < 10; i++) 
	{
		if (read(fd, &val, 4) == 4)
			printf("get button: 0x%x\n", val);
		else
			printf("get button: -1\n");
	}
	flags = fcntl(fd, F_GETFL);
	fcntl(fd, F_SETFL, flags & ~O_NONBLOCK);
	while (1)
	{
		if (read(fd, &val, 4) == 4)
			printf("get button: 0x%x\n", val);
		else
			printf("while get button: -1\n");
	}
	close(fd);
	return 0;
}

驱动代码解析:
image
为每个按键注册中断服务

image
硬件中断上半部irq中做完重要事情如:清中断,然后返回IRQ_WAKE_THREAD

image
返回后,内核线程开始调度gpio_key_thread_func,中断线程化的处理函数gpio_key_thread_func做完后返回IRQ_HANDLED;

image
最后卸载驱动时取消irq注册

3. threaded_irq内核机制

前面中断相关结构体讲过struct irq_desc结构:
image

1. 当发生中断时,handler函数被调用,如果返回IRQ_HANDLED,表示中断处理完毕,如果返回IRQ_WAKE_THREAD表示要唤醒thread_fn.
2. 内核线程唤醒后,执行thread_fn
  1. request_threaded_irq过程:
点击查看代码

/**
 *	request_threaded_irq - allocate an interrupt line
 *	@irq: Interrupt line to allocate
 *	@handler: Function to be called when the IRQ occurs.
 *		  Primary handler for threaded interrupts
 *		  If NULL and thread_fn != NULL the default
 *		  primary handler is installed
 *	@thread_fn: Function called from the irq handler thread
 *		    If NULL, no irq thread is created
 *	@irqflags: Interrupt type flags
 *	@devname: An ascii name for the claiming device
 *	@dev_id: A cookie passed back to the handler function
 *
 *	This call allocates interrupt resources and enables the
 *	interrupt line and IRQ handling. From the point this
 *	call is made your handler function may be invoked. Since
 *	your handler function must clear any interrupt the board
 *	raises, you must take care both to initialise your hardware
 *	and to set up the interrupt handler in the right order.
 *
 *	If you want to set up a threaded irq handler for your device
 *	then you need to supply @handler and @thread_fn. @handler is
 *	still called in hard interrupt context and has to check
 *	whether the interrupt originates from the device. If yes it
 *	needs to disable the interrupt on the device and return
 *	IRQ_WAKE_THREAD which will wake up the handler thread and run
 *	@thread_fn. This split handler design is necessary to support
 *	shared interrupts.
 *
 *	Dev_id must be globally unique. Normally the address of the
 *	device data structure is used as the cookie. Since the handler
 *	receives this value it makes sense to use it.
 *
 *	If your interrupt is shared you must pass a non NULL dev_id
 *	as this is required when freeing the interrupt.
 *
 *	Flags:
 *
 *	IRQF_SHARED		Interrupt is shared
 *	IRQF_TRIGGER_*		Specify active edge(s) or level
 *
 */
int request_threaded_irq(unsigned int irq, irq_handler_t handler,
			 irq_handler_t thread_fn, unsigned long irqflags,
			 const char *devname, void *dev_id)
{
	struct irqaction *action;
	struct irq_desc *desc;
	int retval;

	if (irq == IRQ_NOTCONNECTED)
		return -ENOTCONN;

	/*
	 * Sanity-check: shared interrupts must pass in a real dev-ID,
	 * otherwise we'll have trouble later trying to figure out
	 * which interrupt is which (messes up the interrupt freeing
	 * logic etc).
	 *
	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
	 * it cannot be set along with IRQF_NO_SUSPEND.
	 */
	if (((irqflags & IRQF_SHARED) && !dev_id) ||
	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
		return -EINVAL;

	desc = irq_to_desc(irq);
	if (!desc)
		return -EINVAL;

	if (!irq_settings_can_request(desc) ||
	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
		return -EINVAL;

	if (!handler) {
		if (!thread_fn)
			return -EINVAL;
		handler = irq_default_primary_handler;
	}

	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
	if (!action)
		return -ENOMEM;

	action->handler = handler;
	action->thread_fn = thread_fn;
	action->flags = irqflags;
	action->name = devname;
	action->dev_id = dev_id;

	retval = irq_chip_pm_get(&desc->irq_data);
	if (retval < 0) {
		kfree(action);
		return retval;
	}

	chip_bus_lock(desc);
	retval = __setup_irq(irq, desc, action);
	chip_bus_sync_unlock(desc);

	if (retval) {
		irq_chip_pm_put(&desc->irq_data);
		kfree(action->secondary);
		kfree(action);
	}

#ifdef CONFIG_DEBUG_SHIRQ_FIXME
	if (!retval && (irqflags & IRQF_SHARED)) {
		/*
		 * It's a shared IRQ -- the driver ought to be prepared for it
		 * to happen immediately, so let's make sure....
		 * We disable the irq to make sure that a 'real' IRQ doesn't
		 * run in parallel with our fake.
		 */
		unsigned long flags;

		disable_irq(irq);
		local_irq_save(flags);

		handler(irq, dev_id);

		local_irq_restore(flags);
		enable_irq(irq);
	}
#endif
	return retval;
}

image
首先根据irq num获取到struct irq_desc信息。
然后分配、设置一个 irqaction 结构体。设置中断相关参数
然后进入__setup_irq,__setup_irq 函数核心代码如下:

if (new->thread_fn && !nested) {
	ret = setup_irq_thread(new, irq, false);

setup_irq_thread函数核心代码如下:

if (!secondary) {
	t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
	 new->name);
} else {
	t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
	 new->name);
	param.sched_priority -= 1;
}
new->thread = t;

image
image
可以看到创建了irq_thread这个内核线程。线程名字为“irq/pid-中断名字”。kthread_create()只是创建一个内核线程,但并没有启动,需要调用wake_up_process()来启动线程,所以内核又帮我们定义了一个宏kthread_run来帮我们搞定. 然后将返回的task_strcut给到irqaction.
我们知道irqaction就包含了thread_fn和handler。
那么thread_fn是怎么被执行到的呢?
当中断产生时,gic驱动框架调用关系如下:

Breakpoint 1, gpio_keys_gpio_isr (irq=200, dev_id=0x863e6930) at drivers/input/keybo
ard/gpio_keys.c:393
393 {
(gdb) bt
#0 gpio_keys_gpio_isr (irq=200, dev_id=0x863e6930) at drivers/input/keyboard/gpio_k
eys.c:393
#1 0x80270528 in __handle_irq_event_percpu (desc=0x8616e300, flags=0x86517edc) at ke
rnel/irq/handle.c:145
#2 0x802705cc in handle_irq_event_percpu (desc=0x8616e300) at kernel/irq/handle.c:18
5
#3 0x80270640 in handle_irq_event (desc=0x8616e300) at kernel/irq/handle.c:202
#4 0x802738e8 in handle_level_irq (desc=0x8616e300) at kernel/irq/chip.c:518
#5 0x8026f7f8 in generic_handle_irq_desc (desc=<optimized out>) at ./include/linux/i
rqdesc.h:150
#6 generic_handle_irq (irq=<optimized out>) at kernel/irq/irqdesc.c:590
#7 0x805005e0 in mxc_gpio_irq_handler (port=0xc8, irq_stat=2252237104) at drivers/gp
io/gpio-mxc.c:274
#8 0x805006fc in mx3_gpio_irq_handler (desc=<optimized out>) at drivers/gpio/gpio-mx
c.c:291
#9 0x8026f7f8 in generic_handle_irq_desc (desc=<optimized out>) at ./include/linux/i
rqdesc.h:150
#10 generic_handle_irq (irq=<optimized out>) at kernel/irq/irqdesc.c:590
#11 0x8026fd0c in __handle_domain_irq (domain=0x86006000, hwirq=32, lookup=true, regs
=0x86517fb0) at kernel/irq/irqdesc.c:627
#12 0x80201484 in handle_domain_irq (regs=<optimized out>, hwirq=<optimized out>, dom
ain=<optimized out>) at ./include/linux/irqdesc.h:168
#13 gic_handle_irq (regs=0xc8) at drivers/irqchip/irq-gic.c:364
#14 0x8020b704 in __irq_usr () at arch/arm/kernel/entry-armv.S:464

image
来看gpio_keys_gpio_isr是如何一层层调用上来的。从__handle_irq_event_percpu开始分析:(它在kernel\irq\handle.c中)
image
执行上半部提供的的handler函数。判断上半部返回值如果是IRQ_WAKE_THREAD,就唤醒中断线程处理函数。如果上半部返回值是IRQ_HANDLED,表示该中断无需线程化处理,直接退出。
__irq_wake_thread分析:(它在kernel\irq\handle.c中)

void __irq_wake_thread(struct irq_desc *desc, struct irqaction *action)
{
	......
	atomic_inc(&desc->threads_active);
	wake_up_process(action->thread);
}

唤醒的是谁,就是action->thread,也就是对应前面kthread_create出来的irq_thread。
image

irq_thread函数分析:(kernel\irq\manage.c)平时irq_thread是处于休眠状态,不占用cpu资源。当被唤醒后,irq_thread进入唤醒状态调用handler_fn,也就是最终使用者预先设定的action->thread_fn。

/*
 * Interrupt handler thread
 */
static int irq_thread(void *data)
{
	struct callback_head on_exit_work;
	struct irqaction *action = data;
	struct irq_desc *desc = irq_to_desc(action->irq);
	irqreturn_t (*handler_fn)(struct irq_desc *desc,
			struct irqaction *action);

	if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
					&action->thread_flags))
		handler_fn = irq_forced_thread_fn;
	else
		handler_fn = irq_thread_fn;

	init_task_work(&on_exit_work, irq_thread_dtor);
	task_work_add(current, &on_exit_work, false);

	irq_thread_check_affinity(desc, action);

	while (!irq_wait_for_interrupt(action)) {
		irqreturn_t action_ret;

		irq_thread_check_affinity(desc, action);

		action_ret = handler_fn(desc, action);
		if (action_ret == IRQ_HANDLED)
			atomic_inc(&desc->threads_handled);
		if (action_ret == IRQ_WAKE_THREAD)
			irq_wake_secondary(desc, action);

		wake_threads_waitq(desc);
	}
/*
 * Interrupts explicitly requested as threaded interrupts want to be
 * preemtible - many of them need to sleep and wait for slow busses to
 * complete.
 */
static irqreturn_t irq_thread_fn(struct irq_desc *desc,
		struct irqaction *action)
{
	irqreturn_t ret;

	ret = action->thread_fn(action->irq, action->dev_id);
	irq_finalize_oneshot(desc, action);
	return ret;
}

image
image

标签:__,10,threaded,thread,中断,irq,int,key,gpio
From: https://www.cnblogs.com/fuzidage/p/17580922.html

相关文章

  • windows10 安装.NET 5开发环境
    0、环境说明操作系统:windows10系统64位  1、开发工具版本windows10系统VisualStudio2019开发.NET5项目环境要求:VisualStudio2019 :升级到版本16.8以上(可直接在VS工具中直接升级版本) 2、下载.NET5官网网址:https://dotnet.microsoft.com/zh-cn/download/dotnet......
  • LeetCode 热题 100 之 56. 合并区间
    题目以数组intervals表示若干个区间的集合,其中单个区间为intervals[i]=[starti,endi]。请你合并所有重叠的区间,并返回 一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间 。示例1:输入:intervals=[[1,3],[2,6],[8,10],[15,18]]输出:[[1,6],[8,10],[15,18]]解......
  • 104. 二叉树的最大深度
    给定一个二叉树,找出其最大深度。二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。说明: 叶子节点是指没有子节点的节点。示例:给定二叉树 [3,9,20,null,null,15,7],3/\920/\157返回它的最大深度 3。#Definitionforabinarytreenode.......
  • 宽高各加10
    问题:一个单元格里的宽*高,需要将各自加上10函数公式解决:宽:=LEFT(E3,FIND("*",E3)-1)+10高:=MID(E3,FIND("*",E3)+1,9)+10Find部分,找出字符串中*所在的位置宽的部分用左取函数Left,提取字符串中*前的字符,结果再加上10高的部分用中取函数mid,提取字符串中从*往后若干个字符,此......
  • win10锁屏壁纸提取保存
    win10锁屏壁纸提取保存操作将fetchWinScreenAllPic.bat放在任意位置,双击它,在该脚本同级目录会产生一个images文件夹,里面存放着锁频时看到的壁纸图片。可能会包含多张不同尺寸的,甚至是之前存在的(暂时还未被系统清除掉的),选择你想要的那张另存为即可。解释bat脚本如下@echoOFFsetlo......
  • Web开发者不容错过的10个HTML5工具
    HTML5已经成为当今世界的一个必然组成部分。由于WorldWideWeb万维网是使用超文本标记语言来架构和呈现的,于是HTML5成为了最流行的编程语言之一。随着网络的不断扩张,Web开发人员非常有必要拥有最新的HTML5工具,用于创建动态和交互式的Web应用程序和网页。下面这些就是你不应该错过......
  • 痞子衡嵌入式:恩智浦i.MX RT1xxx系列MCU启动那些事(10.A)- FlexSPI NAND启动时间(RT1170)
    大家好,我是痞子衡,是正经搞技术的痞子。今天痞子衡给大家介绍的是恩智浦i.MXRT1170FlexSPINAND启动时间。本篇是i.MXRT1170启动时间评测第四弹,前三篇分别给大家评测了RawNAND启动时间(基于MIMXRT1170-EVK_Rev.B)、SerialNOR启动时间(基于MIMXRT1170-EVB_Rev.A2)......
  • Pixelmator Pro 3.3.10 Mosaic (macOS Universal) - 专业图像编辑工具
    PixelmatorPro3.3.10Mosaic(macOSUniversal)-专业图像编辑工具请访问原文链接:https://sysin.org/blog/pixelmator-pro-3/,查看最新版。原创作品,转载请保留出处。作者主页:sysin.orgPixelmatorPro真正基于AppleMac技术构建,不像某些异类(A3和奥多比)写个文档和做个图都......
  • Windows 10 on ARM, version 22H2 (updated Jul 2023) ARM64 AArch64 中文版、英文版
    Windows10onARM,version22H2(updatedJul2023)ARM64AArch64中文版、英文版下载基于ARM的Windows10请访问原文链接:https://sysin.org/blog/windows-10-arm/,查看最新版。原创作品,转载请保留出处。作者主页:sysin.orgWindows10,version22H2(releasedNov2021)......
  • 最完美WIN10_Pro_22H2.19045.3271软件选装纯净版VIP51.1
    【系统简介】=============================================================1.本次更新母盘来自UUP_WIN10_PRO_22H2.19045.3271。进一步精简优化调整。2.只为呈现最好的作品,手工精简优化部分较多。3.OS版本号为19045.3271。个别要求高的就下MSDN吧,里面啥功能都有。4.集成《DrvCeo......