首页 > 其他分享 >[USACO13DEC] The Bessie Shuffle S 洗牌 题解

[USACO13DEC] The Bessie Shuffle S 洗牌 题解

时间:2023-07-29 11:58:14浏览次数:46  
标签:Shuffle co int 题解 置换 len Part MAXN Bessie

提供一种思路,可以做到\(O(n)\)。
目前是全OJ最优解,跑到了79ms

update 2023.07.29 完工,期望无bug(暑假快乐吖o( ̄▽ ̄)ブ)
update 2023.07.27 (要原题检测了,先占个坑,有时间再补)

原题大意

P3095 [USACO13DEC] The Bessie Shuffle S

有\(n\)张牌,每次取出\(m\;(m<n)\)张牌进行置换操作。操作完一轮后会出第\(1\)张牌,并再加入\(1\)张牌继续进行新一轮的置换操作。
最后无法再进行操作时,则按现顺序不断出牌。

求倒数第\(x\)次出牌的原编号是多少。

暴力解法

如果没有思考直接开码的话,得到的暴力代码是\(O(nq)\)的。这个时间复杂度2013年的老机器是过不了的。
但是wangziye就是暴力+玄学优化+快读+卡常+优秀的DYOJ评测机在考场暴切了这道紫题。经过计算,他的代码时间复杂度不到\(O(nq)\),最坏情况大概1000ms多一点点。
Orz%%%

预计:\(73pts\)

倍增解法

这是正解的一种。通过倍增优化后,时间复杂度是\(O(n \log n)\)。

此处不展开讲倍增解法,原因有三:

  1. 本题的分析一栏,教练已经写了倍增解法的题解。
  2. 虽然是\(O(n \log n)\),可以通过本题,但还不是最优解,本帖主要讲最优解\(O(n)\)做法。
  3. 本人只会不熟练的运用倍增求LCA问题(虽然现在还是用树链剖分求LCA),倍增还能优化是我听教练讲解后才知道的。

预计:\(100pts\)

\(O(n)\)解法

[warning]:前方请准备好草稿纸,有演算过程……

Part 0 思考性质

首先我们考虑普通的置换。
例如下面的这个情景:

有5个学生要换位置。
原位置:

\[1\;2\;3\;4\;5 \]

目标位置:

\[4\;3\;1\;5\;2 \]

推论:如果我们把原位置上的数与目标位置上的数进行建边,会得到一些(可能一个)环或点。
如上例:

\[1\to 4\to 5\to 2\to 3\to 1 \]

多举几个例子,会发现都符合推论。

那我们再来看本题的置换。
但是本题的置换有一个很大的特色——每次置换后都会推出第\(1\)个数,加入第\(m+1\)个数。

这样的特色带来了一个性质:那就是本题置换不会出现环,只会出现链。

为什么呢?因为有一个都被推出了,相当于下一次的置换就再也找不到那一个。因此不会形成环。

那现在,就对我们的置换操作,来分些Part吧。

Part 1 “直接走”操作

为什么叫“直接走”?这个操作用来得到被推出来的\(n-m+1\)张牌。
\(n-m+1\)是因为最多只会做\(n-m+1\)次置换。

因此,可以用dfs染色的方法先把含\(1\)的链得出。那么按dfs顺序得到的一些\(x_i\)代表着正数第\(i\)次原编号为\(x\)的牌就被推出了。

但是要一点要注意,因为有的时候置换的操作不多,所以可能有一些残留的、与答案不符的。
所以需要做个判断,假设得到的\(x\)数组长度为\(len\)。

  • 若\(len< n-m+1\),则将\(x_i\)其中\(i\in [1,len]\)一个一个地压入答案的\(ans[]\)数组里。
  • 否则,直接将\(i\in [1,n-m+1]\)的所有\(x_i\)压入\(ans[]\)即可。

但是,第一种情况时,还有一些\((n-m+1-len)\)的元素还没压入怎么办?如何考虑这些元素?

请移步Part 2

Part 2 “直接走没走完”操作

这里,我们如何思考?

考场上,可以通过打表法来观察。即我们手搓样例,再模拟出牌过程。

[warning]:如果你不想思考、不想自己动手,可以直接跳到一个结论部分。

这里可以提供一组样例,十分建议大家手搓一下:

输入

10 5 10
4
1
3
5
2
10
9
8
7
6
5
4
3
2
1

输出

2
3
1
5
6
7
10
8
9
4

这个样例,是属于“直接走没走完”的情况。因为含\(1\)的链,只有

\[2\to 3\to 1\to 5 \]

这也正是样例输出的前四个。

但是\(n-m+1=10-5+1=6\),现在只得到了“直接走”部分的前\(4\)个,还有俩没输出呢,怎么办?

仔细看看样例输出,\(6\)和\(7\)是接下来的这俩。

有啥规律吗?如果你再多搓几组样例,就会发现一个结论。

一个结论

\[x_i=m+i\;\;\;\;\; i\in [len+1,n-m+1-len] \]

但是道理是什么?
因为我们这\(m\)个位置的置换可以分成两部分:

  • 从入口\(0\)到\(m\)的一条链(路径)
  • 其余部分

而这个其余部分是各种大小不一的环,而置换后,本质上数的位置就是环中不断变换的位置。

结论已出,那此Part结束。现在,我们剑指Part 3。

Part 3 “走不完”操作

为什么叫“走不完”?
因为剩下的部分数量$< m $无法进行置换操作。故称“走不完”。

此处要注意的是,有些人一开始会认为:“这些牌做不了置换,那就没有发生过位置变动,直接一个一个按原顺序压入\(ans[]\)好了。”

错误的。

因为有一些部分“经历过”置换,可能是被换过来的。所以上面的说法并不正确。

那这一部分怎么处理呢?

先假设从入口\(0\)到\(m\)的链(路径)长度为\(l\)。
因为这是最后的\(m-1\)个数,所以链(路径)中留下来的就是最后进入链(路径)的\(l-1\)个数。因为没有第\(m\)个数了(数量都\(< m\) 了嘛),意味着没有新的数加入进来。其余位置也就是环了(这里解释过,在Part 2末),那么可以用同余的方式得出每个位置上的数。

Part 4 查询操作

那现在,我们把置换分成的这3个部分全分析清楚了,那么出牌顺序就可以存下来\(ans[]\)。询问的时候,\(O(1)\)输出就好了。

时间复杂度:\(O(n)\)

预计:\(100pts\)

代码实现

虽然时间复杂度降下来了,但是这个方法的思考难度、实现难度都比倍增法更难一些。
所以这里贴一份全代码,各位奆奆洁身自好、不要COPY

此处贴一份原题检测时AC的代码,因为是原题检测,为了手速就丢掉快读、快写了。79ms的评测代码是加了快读、快写的。
评测下来是90ms,这仍比\(O(n\log n)\)的倍增做法快了不止一点。

[warning]:码风丑的话喷轻一点(逃

code

#include<bits/stdc++.h>
using namespace std;

#define int long long
#define pb push_back

const int MAXN=1e5+5;

int n,m,q;
int p[MAXN],f[MAXN];
int tot,cnt,len=-1;
int rk[MAXN];
int col[MAXN],ans[MAXN],b[MAXN],c[MAXN];
bool vis[MAXN];
struct node
{
    vector<int> v;
}a[MAXN];

void dfs(int x,int co)
{
    if(col[x]) return;
    if(co==1)
        b[++len]=x;
    col[x]=co;
    rk[x]=a[co].v.size();
    a[co].v.pb(x);
    if(x>=m) return;
    dfs(f[x+1],co);
}

void work1(int x)
{
    if(col[x]==1)
    {
        if(rk[x]>=n-m+1)
            c[a[1].v[rk[x]-n+m-1]]=x;
    }
    else
    {
        int co=col[x];
        int l=a[co].v.size();
        c[a[co].v[((rk[x]-n+m-1)%l+l)%l]]=x;
    }
}

void work2(int x,int y)
{
    if(vis[x]) return;
    if(rk[m]>=y)
        c[a[1].v[rk[m]-y]]=x;
}

signed main()
{
    scanf("%lld%lld%lld",&n,&m,&q);
    for(int i=1;i<=m;i++)
        scanf("%lld",&p[i]),f[p[i]]=i;
    for(int i=0;i<=m;i++)
        if(!col[i])
            dfs(i,++tot);
    if(len<n-m+1)
    {
        for(int i=1;i<=len;i++)
            ans[++cnt]=b[i];
        for(int i=1;i<=n-m+1-len;i++)
            ans[++cnt]=m+i,vis[m+i]=1;
    }
    else for(int i=1;i<=n-m+1;i++)
        ans[++cnt]=b[i];
    for(int i=1;i<=m;i++)
        work1(i);
    for(int i=m+1,j=n-m;i<=n;i++,j--)
        work2(i,j);
    for(int i=1;i<m;i++)
        ans[++cnt]=c[i];
    while(q--)
    {
        int x;
        scanf("%lld",&x);
        printf("%lld\n",ans[n-x+1]);
    }
    return 0;
}

标签:Shuffle,co,int,题解,置换,len,Part,MAXN,Bessie
From: https://www.cnblogs.com/wang-holmes/p/17589577.html

相关文章

  • CF858C 题解
    洛谷链接&CF链接本篇题解为此题较简单做法及较少码量,并且码风优良,请放心阅读。题目简述给你一个均为小写字母的字符串,如果它的子串同时满足:三个连着的辅音字母。这一段连着的辅音字母不是全部一样的。就认为它不合法。现在要求用最少的空格隔开这个字符串,使得它变成......
  • AT_agc022_a 题解
    洛谷链接&Atcoder链接本篇题解为此题较简单做法及较少码量,并且码风优良,请放心阅读。题目简述给定字符串\(S\),仅包含互不相同的小写字母,你需要找到仅包含互不相同的小写字母的字符串中,第一个字典序比它大的字符串,如果找不到输出\(-1\)。(\(|S|\le26\))思路这篇题解......
  • 【题解】[2023牛客多校] Qu'est-ce Que C'est?
    题目传送门:[2023牛客多校]Qu'est-ceQueC'est?题意给定\(n,m\)构造\(a_{1},a_{2},...,a_{n}\),其中\(a_{i}\in[-m,m]\)之间取值。需要保证序列任意连续子段和都非负。\(0\leqn,m\leq5000\)分析记录合法序列的最小后缀。通过最小后缀来判断下一个数的取值范围。......
  • Codeforces Round 888 (Div. 3) 题解
    考场上\(7\)题做出来\(4\)题,最后几分钟才把D题调出来,但还是吃了不少罚时A.EscalatorConversations\(O(n)\)枚举即可,对于每个人计算需要的间隔台阶数是否在\((0,m)\)以内以及相差高度是否是\(k\)的倍数B.ParitySort显然,偶数和奇数是不可能产生交换操作的,而偶数......
  • P2679 [NOIP2015 提高组] 子串 题解
    原题\(题目大意\)\(从字符串a中选出k个子串s_1,s_2,s_3...s_k使得s_1+s_2+s_3+...+s_k=b\)\(求总方案数对10^9+7取模的结果\)\(1\le|a|即n\le1000,1\le|b|即m\le200,1\lek\le|b|\)\(设f_{i,j,x}表示已经选到a的第i个字符,b的第j个字符,共选了x个子串的方案数\)\(则可得......
  • 国标GB28181视频平台LntonGBS(源码版)国标视频平台大并发下SIP消息出现重复SN号的问题解
    随着国家倡导平安城市、智慧城市的建设,安防视频监控作为智慧城市安防建设的重要环节,也越来越受到重视。LntonGBS是基于公安部推出的安防主流协议(国标GB28181协议)的视频接入、处理及分发平台,具有视频直播监控、云端录像、云存储、检索回放、智能告警、语音对讲、平台级联等功能。我......
  • HDU1702 ACboy needs your help again! 题解
    #include<iostream>#include<string>#include<queue>#include<stack>usingnamespacestd;intt,n,m;intmain(){cin>>t;while(t--){queue<int>q;stack<int>s;stringop,str......
  • HDU4841 AHOI1999 圆桌问题 题解
    朴素的约瑟夫问题,用vector处理即可#include<iostream>#include<vector>usingnamespacestd;//AHOI1999圆桌问题类似于约瑟夫问题vector<int>table;intn,m;intmain(){while(cin>>n>>m){table.clear();for(inti=0;......
  • P2127 序列排序 题解
    原题题目意思\(有一个数列a,每次可以挑选任意两个元素交换位置,代价为这两个元素的和,问把序列a升序排序所需的最小总代价\)\(定义数列上的一个有i个元素的环S使得s_1要换到s_2,s_2要到s_3,……,s_i要到s_1\)\(原图一个元素只有一个目标位置,所以可以看作一个有n点,n边的有向图\)......
  • 【题解】[HNOI2015] 落忆枫音
    题目传送门感觉这题挺有意思的,遂写。题目大意给出一个有向无环图,再给定两个点\(s\)和\(t\),表示在点\(s\)和\(t\)间加上一条边。求这个图有多少种生成树。题目分析首先考虑不加边之前的情况,假设给定下面这个图:根据树的定义,除根节点外的节点有且只有一个父亲节点,也就......