首页 > 其他分享 >NC19981 [HAOI2010]软件安装

NC19981 [HAOI2010]软件安装

时间:2023-07-26 16:48:21浏览次数:40  
标签:NC19981 依赖 int scc stk HAOI2010 low 软件

NC19981 [HAOI2010]软件安装

一、题目描述

现在我们的手头有\(N\)个软件,对于一个软件\(i\),它要占用\(W_i\)的磁盘空间,它的价值为\(V_i\)。我们希望从中选择一些软件安装到一台磁盘容量为\(M\)计算机上,使得这些软件的价值尽可能大(即\(V_i\)的和最大)。

但是现在有个问题:软件之间存在依赖关系,即软件\(i\)只有在安装了软件\(j\)(包括软件\(j\)的直接或间接依赖)的情况下才能正确工作(软件\(i\)依赖软件\(j\))。幸运的是,一个软件最多依赖另外一个软件。如果一个软件不能正常工作,那么它能够发挥的作用为\(0\)。

我们现在知道了软件之间的依赖关系:软件\(i\)依赖软件\(D_i\)。现在请你设计出一种方案,安装价值尽量大的软件。一个软件只能被安装一次,如果一个软件没有依赖则\(D_i=0\),这时只要这个软件安装了,它就能正常工作。

输入描述:
第\(1\)行:\(N, M (0 ≤ N ≤ 100, 0 ≤ M ≤ 500)\)
第\(2\)行:\(W_1, W_2, ... W_i, ..., W_n (0 ≤ W_i ≤ M)\)
第\(3\)行:\(V_1, V_2, ..., V_i, ..., V_n (0 ≤ V_i ≤ 1000)\)
第\(4\)行:\(D_1, D_2, ..., D_i, ..., D_n (0 ≤ D_i ≤ N, D_i≠i)\)

输出描述:
一个整数,代表最大价值。

示例1
输入

3 10
5 5 6
2 3 4
0 1 1

输出

5

二、解题思路

一个软件最多依赖另外一个软件,把被别人依赖的某个软件向依赖它的软件连上一条有向边,可以得出,每个点的入度均为\(1\),这是啥?一棵树啊

然而这样想就出现了问题,万一有环呢?好说,把环给缩掉就行了。我们把新出现的一个森林连上一个共同的虚根\(0\),构成一颗树,于是问题就转换成了树形\(DP\)

:容易忽略的情况就是,即使出现环也可以整个环都安装。然后原图如果出现环,这个环必然作为 起点,且这个环不会延申到其他环里。同样地环要么全部装要么全部不装

状态表示

\(f[i][j]\)代表以\(i\)为根的树,在容量为\(j\)的时候,没有处理它的根,所得到的最大价值。

状态转移

\[\large f[i][j]=max(f[i][j],f[i−k][j]+f[son][k−w[son]]+v[son]) \]

\(Code\)

#include <bits/stdc++.h>
using namespace std;

const int N = 110;
const int M = 510;
// 链式前向星
int e[M], h1[N], h2[N], idx, w[M], ne[M];
void add(int h[], int a, int b, int c = 0) {
    e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++;
}

int n, m;
int W1[N], V1[N];
int W2[N], V2[N], in[N];

int f[N][M]; // 以i为根(不装)的子树装j时的最大价值

// tarjan算法求强连通分量
int stk[N], top;    // tarjan算法需要用到的堆栈
bool in_stk[N];     // 是否在栈内
int dfn[N];         // dfs遍历到u的时间
int low[N];         // 从u开始走所能遍历到的最小时间戳
int ts;             // 时间戳,dfs序的标识,记录谁先谁后
int id[N], scc_cnt; // 强连通分量块的最新索引号
int sz[N];          // sz[i]表示编号为i的强连通分量中原来点的个数
void tarjan(int u) {
    dfn[u] = low[u] = ++ts;
    stk[++top] = u;
    in_stk[u] = 1;
    for (int i = h1[u]; ~i; i = ne[i]) {
        int v = e[i];
        if (!dfn[v]) {
            tarjan(v);
            low[u] = min(low[u], low[v]);
        } else if (in_stk[v])
            low[u] = min(low[u], dfn[v]);
    }

    if (dfn[u] == low[u]) {
        ++scc_cnt; // 强连通分量的序号
        int x;     // 临时变量x,用于枚举栈中当前强连通分量中每个节点
        do {
            x = stk[top--];  // 弹出节点
            in_stk[x] = 0;   // 标识不在栈中了
            id[x] = scc_cnt; // 记录每个节点在哪个强连通分量中
            sz[scc_cnt]++;   // 这个强连通分量中节点的个数+1

            //===========下面两句是本题特殊的地方================
            W2[scc_cnt] += W1[x]; // 记录每个SCC的累加体积和累加价值
            V2[scc_cnt] += V1[x];
        } while (x != u);
    }
}

// 以dfs方式完成树形dp汇总
void dfs(int u) {
    // ① DP初始化
    // 对于以u为根的子树而言,如果剩余空间能够装得下u,那么最少将获取到V2[u]的价值
    for (int i = W2[u]; i <= m; i++) f[u][i] = V2[u];

    for (int i = h2[u]; ~i; i = ne[i]) {
        int v = e[i];
        dfs(v); // 先填充儿子,再回填充父亲

        // ② 有树形背包,有依赖的背包
        for (int i = m; i >= W2[u]; i--)                       // 枚举每个可能的空间
            for (int j = 0; j + W2[u] <= i; j++)               // 准备给v子树分配j这么大的空间
                f[u][i] = max(f[u][i], f[v][j] + f[u][i - j]); // 给v分配j这么大的空间,剩余就是一个子问题了
    }
}

int main() {
#ifndef ONLINE_JUDGE
    freopen("NC19981.in", "r", stdin);
#endif
    memset(h1, -1, sizeof h1); // 初始人链式前向星
    memset(h2, -1, sizeof h2); // 初始人链式前向星
    scanf("%d%d", &n, &m);     // n个节点,m是最多能承受的重量上限
    // 体积,价值
    for (int i = 1; i <= n; i++) scanf("%d", W1 + i);
    for (int i = 1; i <= n; i++) scanf("%d", V1 + i);

    for (int i = 1; i <= n; i++) { // 枚举每个节点
        int x;                     // i依赖于x,由x->i建边
        scanf("%d", &x);
        if (x) add(h1, x, i); // x为0表示当前节点不需要前序依赖
    }

    // Tarjan缩点
    for (int i = 1; i <= n; i++)
        if (!dfn[i]) tarjan(i);

    // 枚举每条出边
    for (int u = 1; u <= n; u++)
        for (int i = h1[u]; ~i; i = ne[i]) {
            int v = e[i];
            int a = id[u], b = id[v];
            if (a != b) { // u和v不是同一个强连通分量,a-b之间创建边
                add(h2, a, b);
                in[b]++; // 标识强连通分量b的入度+1
            }
        }

    // 枚举每个强连通分量,找出入度为零的强连通分量,从虚拟源点0向这个入度为零的强连通分量引一条边
    for (int i = 1; i <= scc_cnt; i++)
        if (!in[i]) add(h2, 0, i);

    // 从超级源点出发,开始搜索
    dfs(0);

    // 从超级源点树的根0出发,分配容量最多为m时的最大价值
    printf("%d\n", f[0][m]);
    return 0;
}

标签:NC19981,依赖,int,scc,stk,HAOI2010,low,软件
From: https://www.cnblogs.com/littlehb/p/17582876.html

相关文章

  • 第十一章:软件配置管理
    将一切纳入配置管理:配置管理目标可追溯性:任何人在获得授权的前提下,能够找到该软件的任何变更历史。例如:源代码版本管理系统(如Git、Subversion等)就属于软件配置管理工具,它包含代码仓库中所有代码的修订信息可重现性:任何人在获得授权的前提下,能够重现从过......
  • InDesign (ID) 2018排版设计软件下载和安装教程
    InDesign软件是一个定位于专业排版领域的设计软件,是面向公司专业出版方案的新平台,由Adobe公司于1999年9月1日发布。它是基于一个新的开放的面向对象体系,可实现高度的扩展性,还建立了一个由第三方开发者和系统集成者可以提供自定义杂志、广告设计、目录、零售商设计工作室和报纸出版......
  • Android开源防火墙软件droidwall
    给大家推荐一个开源的防火墙项目,感兴趣的朋友可以研究一下。DroidWall是Android操作系统上一款强大的网络防火墙,软件原理是利用linux中iptables,根据创建iptables规则,阻止某些应用程序进行访问网络,屏蔽软件中垃圾广告。项目地址:https://code.google.com/p/droidwall/源代码下载地......
  • 【软件记录】开源软件 #1
    1.Calibre-电子书管理源码: https://github.com/kovidgoyal/calibre官网: https://www.calibre-ebook.com/zh_CN 2.SumatraPDF-PDF阅读器源码: https://github.com/sumatrapdfreader/sumatrapdf官网: https://www.sumatrapdfreader.org/free-pdf-reader 3.sK1......
  • 第五章:持续交付的软件系统架构
    “大系统小做”原则:持续交付架构要求:系统架构在设计时应该考虑如下因素1.为测试而设计2.为部署而设计3.为监控而设计4.为扩展而设计:支持团队成员规模的扩展,支持系统自身的扩展5.为失效而设计:一旦部署或发布失败,如何优雅且......
  • MT4期货软件App靠谱吗?投资者需要了解哪些知识点?
    很多投资者在选择期货交易平台的时候,都会接触到MT4期货软件App,事实上MT4期货软件App的用户人数也是非常多的。但是不熟悉MT4期货软件App的投资者会对此有些怀疑,选择它真的靠谱吗?当然,投资者可以在选择之前反复考虑这些问题,确认靠谱之后再开始下一步的操作。MT4的优点想必做期货交易......
  • 企业通讯软件都有哪些?4款常见的企业通讯软件推荐
    在现代企业中,高效的内部沟通和协作是成功的关键。为了满足这一需求,越来越多的企业开始使用专门的企业通讯软件。这些软件提供了一系列功能,包括即时通讯、视频会议、文件共享等,帮助团队成员更好地协作和沟通。那么企业通讯软件都有哪些?下面推荐几款比较常见的企业通讯软件。  ......
  • Mac好用的文献管理软件-EndNote 20
    EndNote20是一款以强大功能为基础,以文献管理软件为核心的跨平台数据库管理系统。EndNote20具有强大的文献检索和处理功能,支持快速检索文本、文献和图像。可以通过一键下载安装到Mac/win,也可以在Windows上使用。EndNote20可以将文件管理和处理功能集成到一个单一文件夹中,便于......
  • 软件测试|超好用超简单的Python GUI库——tkinter(十三)
    前言我们之前介绍了tkinter的单选框与多选框,单选框和多选框在我们日常生活中有很广泛的使用,我们还可是以音乐播放软件举例,音量调节不是通过我们输入来调节,而是以这样的滑块来滑动。同样的,tkinter也有控件来实现类似的功能,tkinter的scale控件就可以实现这样的功能。Scale控件S......
  • 软件测试|教你怎么向SQL中插入数据
    前言有的时候,我们需要向数据库表中写入新数据,但是我们不可能新建一个表,我们需要使用插入功能向数据库表中写入新数据。SQL提供了INSERTINTO的方法,满足我们向表中插入数据行的需求。INSERTINTOINSERTINTO的基本语法如下:按指定的列插入数据,语法如下:INSERTINTOtable_nam......