首页 > 其他分享 > TypeScript学习笔记(四)—— TypeScript提高

TypeScript学习笔记(四)—— TypeScript提高

时间:2022-09-29 16:01:36浏览次数:91  
标签:TypeScript name Days 笔记 number 学习 Animal type string

一、类型type

1.1、定义

Type又叫类型别名(type alias),作用是给一个类型起一个新名字,不仅支持interface定义的对象结构,还支持基本类型、联合类型、交叉类型、元组等任何你需要手写的类型。

type Num = number; // 基本类型
type StringOrNum = string | number; // 联合类型
type Person = {name: string}; // 对象类型
type User = person & { age: number } // 交叉类型
type Data = [string, number]; // 元组
type Fun = () => void; // 函数类型

类型别名用来给一个类型起个新名字。

简单的例子

type Name = string;
type NameResolver = () => string;
type NameOrResolver = Name | NameResolver;
function getName(n: NameOrResolver): Name {
    if (typeof n === 'string') {
        return n;
    } else {
        return n();
    }
}

上例中,我们使用 type 创建类型别名。

类型别名常用于联合类型。

1.2、基本使用

通过type可以定义类似接口的类型,如下示例中User是一个自定义的类型,tom被User约束:

type User={
    name:string;
    age:number;
}
let tom:User={
    name: "tom",
    age: 18
}

1.2、联合使用

type User={
    name:string;
    age:number;
}
type Fly={
    fly():void;
}

type SuperMan=User & Fly;

let superMan:SuperMan;

superMan={name:"jack",age:20,fly:()=>console.log("我会飞")}
superMan.fly();

console.log(typeof(superMan));

运行结果:

1.3、type与interface接口的相同点

1.都可以用来描述一个对象或者函数

interface

interface user {name: string; age:number}; // 对象
interface setUser {(name: string; age:number):void}; // 函数

type

type user = {name: string; age:number}; // 对象
type setUser = (name: string; age:number):void;//函数

2.都可以进行拓展

interface可以扩展,type可以通过交叉实现interface的extends行为,interface可以extends type,同时type也可以与interface类型交叉 。

// interface通过extends实现继承
interface userName {
  name: string;
}
interface user extends userName {
  age: number
}
let stu:user = {name: 'wang', age: 10}
 
// interface的extends扩展可以通过type交叉(&)类型实现
type userName = {
   name: string;
}
type user = userName & {age: number}
let stu:user={name: 'wang', age: 18}
 
// interface扩展type
type name = {
  name: string;
}
interface user extends name {
  age: number;
}
let stu:user={name: 'wang', age: 89}
 
// type与interface交叉
interface name {
  name: string;
}
type user = name & {
  age: number;
}
let stu:user={name:'wang', age: 18}

3.在type中可以使用泛型,接口也可以使用泛型

type Zoo<T> = T;
const num : Zoo<number> = 3;

type callback<T> = (data: T) => void;

1.4、type与interface接口的不同点

1.类型别名可以用于其它类型 (联合类型、元组类型、基本类型(原始值)),interface不支持

type Name=string;  //正确
interface Num=number;  //错误

2.interface 可以多次定义来合并声明,type 不支持

interface user {
    name: string;
    age: number;
}
interface user {
    sex: string;
}
//user实际接口为:
{
    name: string;
    age: number;
    sex: string;
}

3.type 能使用 in 关键字生成映射类型,但 interface 不行

type keys="name"|"sex";

type User={
    [key in keys]:string;
}

let tom:User={name:"tom",sex:"male"}

4.默认导出方式不同

// inerface 支持同时声明,默认导出 而type必须先声明后导出
export default interface name {
  name: string;
};
// 同一个js模块只能存在一个默认导出
 type typeName = {name: string};
  export default typeName

5.type可以使用typeof获取实例类型

let div = document.createElement('div');
type divType = typeof div;

二、字符串字面量类型

字符串字面量类型用来约束取值只能是某几个字符串中的一个。

简单的例子

type EventNames = 'click' | 'scroll' | 'mousemove';
function handleEvent(ele: Element, event: EventNames) {
    // do something
}

handleEvent(document.getElementById('hello'), 'scroll');  // 没问题
handleEvent(document.getElementById('world'), 'dblclick'); // 报错,event 不能为 'dblclick'

// index.ts(7,47): error TS2345: Argument of type '"dblclick"' is not assignable to parameter of type 'EventNames'.

上例中,我们使用 type 定了一个字符串字面量类型 EventNames,它只能取三种字符串中的一种。

注意,类型别名与字符串字面量类型都是使用 type 进行定义。

在定义变量时可以指定变量的类型为某1个或多个常量,变量的值只能取常量值,如:

//常量 类型

let age:88;  //约束age的值只能是88

age=88;
//age=87.9;  //错误

let sex:"男"|"女";  //sex只允许是男或女
sex="男";
sex="女";

let obj:{name:"tom"}={
    name:"tom"
};

三、元组

数组合并了相同类型的对象,而元组(Tuple)合并了不同类型的对象。

元组起源于函数编程语言(如 F#),这些语言中会频繁使用元组。

简单的例子

定义一对值分别为 string 和 number 的元组:

let tom: [string, number] = ['Tom', 25];

当赋值或访问一个已知索引的元素时,会得到正确的类型:

let tom: [string, number];
tom[0] = 'Tom';
tom[1] = 25;

tom[0].slice(1);
tom[1].toFixed(2);

也可以只赋值其中一项:

let tom: [string, number];
tom[0] = 'Tom';

但是当直接对元组类型的变量进行初始化或者赋值的时候,需要提供所有元组类型中指定的项。

let tom: [string, number];
tom = ['Tom', 25];
let tom: [string, number];
tom = ['Tom'];

// Property '1' is missing in type '[string]' but required in type '[string, number]'.

越界的元素

当添加越界的元素时,它的类型会被限制为元组中每个类型的联合类型:

let tom: [string, number];
tom = ['Tom', 25];
tom.push('male');
tom.push(true);
 

四、枚举

枚举(Enum)类型用于取值被限定在一定范围内的场景,比如一周只能有七天,颜色限定为红绿蓝等。

4.1、简单的例子

枚举使用 enum 关键字来定义:

enum Days {Sun, Mon, Tue, Wed, Thu, Fri, Sat};

枚举成员会被赋值为从 0 开始递增的数字,同时也会对枚举值到枚举名进行反向映射:

enum Days {Sun, Mon, Tue, Wed, Thu, Fri, Sat};

console.log(Days["Sun"] === 0); // true
console.log(Days["Mon"] === 1); // true
console.log(Days["Tue"] === 2); // true
console.log(Days["Sat"] === 6); // true

console.log(Days[0] === "Sun"); // true
console.log(Days[1] === "Mon"); // true
console.log(Days[2] === "Tue"); // true
console.log(Days[6] === "Sat"); // true

事实上,上面的例子会被编译为:

var Days;
(function (Days) {
    Days[Days["Sun"] = 0] = "Sun";
    Days[Days["Mon"] = 1] = "Mon";
    Days[Days["Tue"] = 2] = "Tue";
    Days[Days["Wed"] = 3] = "Wed";
    Days[Days["Thu"] = 4] = "Thu";
    Days[Days["Fri"] = 5] = "Fri";
    Days[Days["Sat"] = 6] = "Sat";
})(Days || (Days = {}));

4.2、手动赋值

我们也可以给枚举项手动赋值:

enum Days {Sun = 7, Mon = 1, Tue, Wed, Thu, Fri, Sat};

console.log(Days["Sun"] === 7); // true
console.log(Days["Mon"] === 1); // true
console.log(Days["Tue"] === 2); // true
console.log(Days["Sat"] === 6); // true

上面的例子中,未手动赋值的枚举项会接着上一个枚举项递增。

如果未手动赋值的枚举项与手动赋值的重复了,TypeScript 是不会察觉到这一点的:

enum Days {Sun = 3, Mon = 1, Tue, Wed, Thu, Fri, Sat};

console.log(Days["Sun"] === 3); // true
console.log(Days["Wed"] === 3); // true
console.log(Days[3] === "Sun"); // false
console.log(Days[3] === "Wed"); // true

上面的例子中,递增到 3 的时候与前面的 Sun 的取值重复了,但是 TypeScript 并没有报错,导致 Days[3] 的值先是 "Sun",而后又被 "Wed" 覆盖了。编译的结果是:

var Days;
(function (Days) {
    Days[Days["Sun"] = 3] = "Sun";
    Days[Days["Mon"] = 1] = "Mon";
    Days[Days["Tue"] = 2] = "Tue";
    Days[Days["Wed"] = 3] = "Wed";
    Days[Days["Thu"] = 4] = "Thu";
    Days[Days["Fri"] = 5] = "Fri";
    Days[Days["Sat"] = 6] = "Sat";
})(Days || (Days = {}));

所以使用的时候需要注意,最好不要出现这种覆盖的情况。

手动赋值的枚举项可以不是数字,此时需要使用类型断言来让 tsc 无视类型检查 (编译出的 js 仍然是可用的):

enum Days {Sun = 7, Mon, Tue, Wed, Thu, Fri, Sat = <any>"S"};
var Days;
(function (Days) {
    Days[Days["Sun"] = 7] = "Sun";
    Days[Days["Mon"] = 8] = "Mon";
    Days[Days["Tue"] = 9] = "Tue";
    Days[Days["Wed"] = 10] = "Wed";
    Days[Days["Thu"] = 11] = "Thu";
    Days[Days["Fri"] = 12] = "Fri";
    Days[Days["Sat"] = "S"] = "Sat";
})(Days || (Days = {}));

当然,手动赋值的枚举项也可以为小数或负数,此时后续未手动赋值的项的递增步长仍为 1

enum Days {Sun = 7, Mon = 1.5, Tue, Wed, Thu, Fri, Sat};

console.log(Days["Sun"] === 7); // true
console.log(Days["Mon"] === 1.5); // true
console.log(Days["Tue"] === 2.5); // true
console.log(Days["Sat"] === 6.5); // true

4.3、常数项和计算所得项

枚举项有两种类型:常数项(constant member)和计算所得项(computed member)。

前面我们所举的例子都是常数项,一个典型的计算所得项的例子:

enum Color {Red, Green, Blue = "blue".length};

上面的例子中,"blue".length 就是一个计算所得项。

上面的例子不会报错,但是如果紧接在计算所得项后面的是未手动赋值的项,那么它就会因为无法获得初始值而报错:

enum Color {Red = "red".length, Green, Blue};

// index.ts(1,33): error TS1061: Enum member must have initializer.
// index.ts(1,40): error TS1061: Enum member must have initializer.

下面是常数项和计算所得项的完整定义,部分引用自中文手册 - 枚举

当满足以下条件时,枚举成员被当作是常数:

  • 不具有初始化函数并且之前的枚举成员是常数。在这种情况下,当前枚举成员的值为上一个枚举成员的值加 1。但第一个枚举元素是个例外。如果它没有初始化方法,那么它的初始值为 0
  • 枚举成员使用常数枚举表达式初始化。常数枚举表达式是 TypeScript 表达式的子集,它可以在编译阶段求值。当一个表达式满足下面条件之一时,它就是一个常数枚举表达式:
    • 数字字面量
    • 引用之前定义的常数枚举成员(可以是在不同的枚举类型中定义的)如果这个成员是在同一个枚举类型中定义的,可以使用非限定名来引用
    • 带括号的常数枚举表达式
    • +-~ 一元运算符应用于常数枚举表达式
    • +-*/%<<>>>>>&|^ 二元运算符,常数枚举表达式做为其一个操作对象。若常数枚举表达式求值后为 NaN 或 Infinity,则会在编译阶段报错

所有其它情况的枚举成员被当作是需要计算得出的值。

4.4、常数枚举

常数枚举是使用 const enum 定义的枚举类型:

const enum Directions {
    Up,
    Down,
    Left,
    Right
}

let directions = [Directions.Up, Directions.Down, Directions.Left, Directions.Right];

常数枚举与普通枚举的区别是,它会在编译阶段被删除,并且不能包含计算成员。

上例的编译结果是:

var directions = [0 /* Up */, 1 /* Down */, 2 /* Left */, 3 /* Right */];

假如包含了计算成员,则会在编译阶段报错:

const enum Color {Red, Green, Blue = "blue".length};

// index.ts(1,38): error TS2474: In 'const' enum declarations member initializer must be constant expression.

4.5、外部枚举

外部枚举(Ambient Enums)是使用 declare enum 定义的枚举类型:

declare enum Directions {
    Up,
    Down,
    Left,
    Right
}

let directions = [Directions.Up, Directions.Down, Directions.Left, Directions.Right];

之前提到过,declare 定义的类型只会用于编译时的检查,编译结果中会被删除。

上例的编译结果是:

var directions = [Directions.Up, Directions.Down, Directions.Left, Directions.Right];

外部枚举与声明语句一样,常出现在声明文件中。

同时使用 declare 和 const 也是可以的:

declare const enum Directions {
    Up,
    Down,
    Left,
    Right
}

let directions = [Directions.Up, Directions.Down, Directions.Left, Directions.Right];

编译结果:

var directions = [0 /* Up */, 1 /* Down */, 2 /* Left */, 3 /* Right */];

TypeScript 的枚举类型的概念来源于 C#

五、类

传统方法中,JavaScript 通过构造函数实现类的概念,通过原型链实现继承。而在 ES6 中,我们终于迎来了 class

TypeScript 除了实现了所有 ES6 中的类的功能以外,还添加了一些新的用法。

这一节主要介绍类的用法,下一节再介绍如何定义类的类型。

5.1、类的概念

虽然 JavaScript 中有类的概念,但是可能大多数 JavaScript 程序员并不是非常熟悉类,这里对类相关的概念做一个简单的介绍。

  • 类(Class):定义了一件事物的抽象特点,包含它的属性和方法
  • 对象(Object):类的实例,通过 new 生成
  • 面向对象(OOP)的三大特性:封装、继承、多态
  • 封装(Encapsulation):将对数据的操作细节隐藏起来,只暴露对外的接口。外界调用端不需要(也不可能)知道细节,就能通过对外提供的接口来访问该对象,同时也保证了外界无法任意更改对象内部的数据
  • 继承(Inheritance):子类继承父类,子类除了拥有父类的所有特性外,还有一些更具体的特性
  • 多态(Polymorphism):由继承而产生了相关的不同的类,对同一个方法可以有不同的响应。比如 Cat 和 Dog 都继承自 Animal,但是分别实现了自己的 eat 方法。此时针对某一个实例,我们无需了解它是 Cat 还是 Dog,就可以直接调用 eat 方法,程序会自动判断出来应该如何执行 eat
  • 存取器(getter & setter):用以改变属性的读取和赋值行为
  • 修饰符(Modifiers):修饰符是一些关键字,用于限定成员或类型的性质。比如 public 表示公有属性或方法
  • 抽象类(Abstract Class):抽象类是供其他类继承的基类,抽象类不允许被实例化。抽象类中的抽象方法必须在子类中被实现
  • 接口(Interfaces):不同类之间公有的属性或方法,可以抽象成一个接口。接口可以被类实现(implements)。一个类只能继承自另一个类,但是可以实现多个接口

5.2、ES6 中类的用法

下面我们先回顾一下 ES6 中类的用法,更详细的介绍可以参考 ECMAScript 6 入门 - Class

属性和方法

使用 class 定义类,使用 constructor 定义构造函数。

通过 new 生成新实例的时候,会自动调用构造函数。

class Animal {
    public name;
    constructor(name) {
        this.name = name;
    }
    sayHi() {
        return `My name is ${this.name}`;
    }
}

let a = new Animal('Jack');
console.log(a.sayHi()); // My name is Jack

类的继承

使用 extends 关键字实现继承,子类中使用 super 关键字来调用父类的构造函数和方法。

class Cat extends Animal {
  constructor(name) {
    super(name); // 调用父类的 constructor(name)
    console.log(this.name);
  }
  sayHi() {
    return 'Meow, ' + super.sayHi(); // 调用父类的 sayHi()
  }
}

let c = new Cat('Tom'); // Tom
console.log(c.sayHi()); // Meow, My name is Tom

存取器

使用 getter 和 setter 可以改变属性的赋值和读取行为:

class Animal {
  constructor(name) {
    this.name = name;
  }
  get name() {
    return 'Jack';
  }
  set name(value) {
    console.log('setter: ' + value);
  }
}

let a = new Animal('Kitty'); // setter: Kitty
a.name = 'Tom'; // setter: Tom
console.log(a.name); // Jack

静态方法

使用 static 修饰符修饰的方法称为静态方法,它们不需要实例化,而是直接通过类来调用:

class Animal {
  static isAnimal(a) {
    return a instanceof Animal;
  }
}

let a = new Animal('Jack');
Animal.isAnimal(a); // true
a.isAnimal(a); // TypeError: a.isAnimal is not a function

5.3、ES7 中类的用法

ES7 中有一些关于类的提案,TypeScript 也实现了它们,这里做一个简单的介绍。

实例属性

ES6 中实例的属性只能通过构造函数中的 this.xxx 来定义,ES7 提案中可以直接在类里面定义:

class Animal {
  name = 'Jack';

  constructor() {
    // ...
  }
}

let a = new Animal();
console.log(a.name); // Jack

静态属性

ES7 提案中,可以使用 static 定义一个静态属性:

class Animal {
  static num = 42;

  constructor() {
    // ...
  }
}

console.log(Animal.num); // 42

5.4、TypeScript 中类的用法

public private 和 protected

TypeScript 可以使用三种访问修饰符(Access Modifiers),分别是 publicprivate 和 protected

  • public 修饰的属性或方法是公有的,可以在任何地方被访问到,默认所有的属性和方法都是 public 的
  • private 修饰的属性或方法是私有的,不能在声明它的类的外部访问
  • protected 修饰的属性或方法是受保护的,它和 private 类似,区别是它在子类中也是允许被访问的

下面举一些例子:

class Animal {
  public name;
  public constructor(name) {
    this.name = name;
  }
}

let a = new Animal('Jack');
console.log(a.name); // Jack
a.name = 'Tom';
console.log(a.name); // Tom

上面的例子中,name 被设置为了 public,所以直接访问实例的 name 属性是允许的。

很多时候,我们希望有的属性是无法直接存取的,这时候就可以用 private 了:

class Animal {
  private name;
  public constructor(name) {
    this.name = name;
  }
}

let a = new Animal('Jack');
console.log(a.name);
a.name = 'Tom';

// index.ts(9,13): error TS2341: Property 'name' is private and only accessible within class 'Animal'.
// index.ts(10,1): error TS2341: Property 'name' is private and only accessible within class 'Animal'.

需要注意的是,TypeScript 编译之后的代码中,并没有限制 private 属性在外部的可访问性。

上面的例子编译后的代码是:

var Animal = (function () {
  function Animal(name) {
    this.name = name;
  }
  return Animal;
})();
var a = new Animal('Jack');
console.log(a.name);
a.name = 'Tom';

使用 private 修饰的属性或方法,在子类中也是不允许访问的:

class Animal {
  private name;
  public constructor(name) {
    this.name = name;
  }
}

class Cat extends Animal {
  constructor(name) {
    super(name);
    console.log(this.name);
  }
}

// index.ts(11,17): error TS2341: Property 'name' is private and only accessible within class 'Animal'.

而如果是用 protected 修饰,则允许在子类中访问:

class Animal {
  protected name;
  public constructor(name) {
    this.name = name;
  }
}

class Cat extends Animal {
  constructor(name) {
    super(name);
    console.log(this.name);
  }
}

当构造函数修饰为 private 时,该类不允许被继承或者实例化:

class Animal {
  public name;
  private constructor(name) {
    this.name = name;
  }
}
class Cat extends Animal {
  constructor(name) {
    super(name);
  }
}

let a = new Animal('Jack');

// index.ts(7,19): TS2675: Cannot extend a class 'Animal'. Class constructor is marked as private.
// index.ts(13,9): TS2673: Constructor of class 'Animal' is private and only accessible within the class declaration.

当构造函数修饰为 protected 时,该类只允许被继承:

class Animal {
  public name;
  protected constructor(name) {
    this.name = name;
  }
}
class Cat extends Animal {
  constructor(name) {
    super(name);
  }
}

let a = new Animal('Jack');

// index.ts(13,9): TS2674: Constructor of class 'Animal' is protected and only accessible within the class declaration.

参数属性

修饰符和readonly还可以使用在构造函数参数中,等同于类中定义该属性同时给该属性赋值,使代码更简洁。

class Animal {
  // public name: string;
  public constructor(public name) {
    // this.name = name;
  }
}

readonly

只读属性关键字,只允许出现在属性声明或索引签名或构造函数中。

class Animal {
  readonly name;
  public constructor(name) {
    this.name = name;
  }
}

let a = new Animal('Jack');
console.log(a.name); // Jack
a.name = 'Tom';

// index.ts(10,3): TS2540: Cannot assign to 'name' because it is a read-only property.

注意如果 readonly 和其他访问修饰符同时存在的话,需要写在其后面。

class Animal {
  // public readonly name;
  public constructor(public readonly name) {
    // this.name = name;
  }
}

抽象类

abstract 用于定义抽象类和其中的抽象方法。

什么是抽象类?

首先,抽象类是不允许被实例化的:

abstract class Animal {
  public name;
  public constructor(name) {
    this.name = name;
  }
  public abstract sayHi();
}

let a = new Animal('Jack');

// index.ts(9,11): error TS2511: Cannot create an instance of the abstract class 'Animal'.

上面的例子中,我们定义了一个抽象类 Animal,并且定义了一个抽象方法 sayHi。在实例化抽象类的时候报错了。

其次,抽象类中的抽象方法必须被子类实现:

abstract class Animal {
  public name;
  public constructor(name) {
    this.name = name;
  }
  public abstract sayHi();
}

class Cat extends Animal {
  public eat() {
    console.log(`${this.name} is eating.`);
  }
}

let cat = new Cat('Tom');

// index.ts(9,7): error TS2515: Non-abstract class 'Cat' does not implement inherited abstract member 'sayHi' from class 'Animal'.

上面的例子中,我们定义了一个类 Cat 继承了抽象类 Animal,但是没有实现抽象方法 sayHi,所以编译报错了。

下面是一个正确使用抽象类的例子:

abstract class Animal {
  public name;
  public constructor(name) {
    this.name = name;
  }
  public abstract sayHi();
}

class Cat extends Animal {
  public sayHi() {
    console.log(`Meow, My name is ${this.name}`);
  }
}

let cat = new Cat('Tom');

上面的例子中,我们实现了抽象方法 sayHi,编译通过了。

需要注意的是,即使是抽象方法,TypeScript 的编译结果中,仍然会存在这个类,上面的代码的编译结果是:

var __extends =
  (this && this.__extends) ||
  function (d, b) {
    for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p];
    function __() {
      this.constructor = d;
    }
    d.prototype = b === null ? Object.create(b) : ((__.prototype = b.prototype), new __());
  };
var Animal = (function () {
  function Animal(name) {
    this.name = name;
  }
  return Animal;
})();
var Cat = (function (_super) {
  __extends(Cat, _super);
  function Cat() {
    _super.apply(this, arguments);
  }
  Cat.prototype.sayHi = function () {
    console.log('Meow, My name is ' + this.name);
  };
  return Cat;
})(Animal);
var cat = new Cat('Tom');

5.5、类的类型

给类加上 TypeScript 的类型很简单,与接口类似:

class Animal {
  name: string;
  constructor(name: string) {
    this.name = name;
  }
  sayHi(): string {
    return `My name is ${this.name}`;
  }
}

let a: Animal = new Animal('Jack');
console.log(a.sayHi()); // My name is Jack

六、类与接口

之前学习过,接口(Interfaces)可以用于对「对象的形状(Shape)」进行描述。

这一章主要介绍接口的另一个用途,对类的一部分行为进行抽象。

6.1、类实现接口

实现(implements)是面向对象中的一个重要概念。一般来讲,一个类只能继承自另一个类,有时候不同类之间可以有一些共有的特性,这时候就可以把特性提取成接口(interfaces),用 implements 关键字来实现。这个特性大大提高了面向对象的灵活性。

举例来说,门是一个类,防盗门是门的子类。如果防盗门有一个报警器的功能,我们可以简单的给防盗门添加一个报警方法。这时候如果有另一个类,车,也有报警器的功能,就可以考虑把报警器提取出来,作为一个接口,防盗门和车都去实现它:

interface Alarm {
    alert(): void;
}

class Door {
}

class SecurityDoor extends Door implements Alarm {
    alert() {
        console.log('SecurityDoor alert');
    }
}

class Car implements Alarm {
    alert() {
        console.log('Car alert');
    }
}

一个类可以实现多个接口:

interface Alarm {
    alert(): void;
}

interface Light {
    lightOn(): void;
    lightOff(): void;
}

class Car implements Alarm, Light {
    alert() {
        console.log('Car alert');
    }
    lightOn() {
        console.log('Car light on');
    }
    lightOff() {
        console.log('Car light off');
    }
}

上例中,Car 实现了 Alarm 和 Light 接口,既能报警,也能开关车灯。

6.2、接口继承接口

接口与接口之间可以是继承关系:

interface Alarm {
    alert(): void;
}

interface LightableAlarm extends Alarm {
    lightOn(): void;
    lightOff(): void;
}

这很好理解,LightableAlarm 继承了 Alarm,除了拥有 alert 方法之外,还拥有两个新方法 lightOn 和 lightOff

七、泛型

泛型(Generics)是指在定义函数、接口或类的时候,不预先指定具体的类型,而在使用的时候再指定类型的一种特性。

7.1、简单的例子

首先,我们来实现一个函数 createArray,它可以创建一个指定长度的数组,同时将每一项都填充一个默认值:

function createArray(length: number, value: any): Array<any> {
    let result = [];
    for (let i = 0; i < length; i++) {
        result[i] = value;
    }
    return result;
}

createArray(3, 'x'); // ['x', 'x', 'x']

上例中,我们使用了之前提到过的数组泛型来定义返回值的类型。

这段代码编译不会报错,但是一个显而易见的缺陷是,它并没有准确的定义返回值的类型:

Array<any> 允许数组的每一项都为任意类型。但是我们预期的是,数组中每一项都应该是输入的 value 的类型。

这时候,泛型就派上用场了:

function createArray<T>(length: number, value: T): Array<T> {
    let result: T[] = [];
    for (let i = 0; i < length; i++) {
        result[i] = value;
    }
    return result;
}

createArray<string>(3, 'x'); // ['x', 'x', 'x']

上例中,我们在函数名后添加了 <T>,其中 T 用来指代任意输入的类型,在后面的输入 value: T 和输出 Array<T> 中即可使用了。

接着在调用的时候,可以指定它具体的类型为 string。当然,也可以不手动指定,而让类型推论自动推算出来:

function createArray<T>(length: number, value: T): Array<T> {
    let result: T[] = [];
    for (let i = 0; i < length; i++) {
        result[i] = value;
    }
    return result;
}

createArray(3, 'x'); // ['x', 'x', 'x']

7.2、多个类型参数

定义泛型的时候,可以一次定义多个类型参数:

function swap<T, U>(tuple: [T, U]): [U, T] {
    return [tuple[1], tuple[0]];
}

swap([7, 'seven']); // ['seven', 7]

上例中,我们定义了一个 swap 函数,用来交换输入的元组。

7.3、泛型约束

在函数内部使用泛型变量的时候,由于事先不知道它是哪种类型,所以不能随意的操作它的属性或方法:

function loggingIdentity<T>(arg: T): T {
    console.log(arg.length);
    return arg;
}

// index.ts(2,19): error TS2339: Property 'length' does not exist on type 'T'.

上例中,泛型 T 不一定包含属性 length,所以编译的时候报错了。

这时,我们可以对泛型进行约束,只允许这个函数传入那些包含 length 属性的变量。这就是泛型约束:

interface Lengthwise {
    length: number;
}

function loggingIdentity<T extends Lengthwise>(arg: T): T {
    console.log(arg.length);
    return arg;
}

上例中,我们使用了 extends 约束了泛型 T 必须符合接口 Lengthwise 的形状,也就是必须包含 length 属性。

此时如果调用 loggingIdentity 的时候,传入的 arg 不包含 length,那么在编译阶段就会报错了:

interface Lengthwise {
    length: number;
}

function loggingIdentity<T extends Lengthwise>(arg: T): T {
    console.log(arg.length);
    return arg;
}

loggingIdentity(7);

// index.ts(10,17): error TS2345: Argument of type '7' is not assignable to parameter of type 'Lengthwise'.

多个类型参数之间也可以互相约束:

function copyFields<T extends U, U>(target: T, source: U): T {
    for (let id in source) {
        target[id] = (<T>source)[id];
    }
    return target;
}

let x = { a: 1, b: 2, c: 3, d: 4 };

copyFields(x, { b: 10, d: 20 });

上例中,我们使用了两个类型参数,其中要求 T 继承 U,这样就保证了 U 上不会出现 T 中不存在的字段。

7.4、泛型接口

之前学习过,可以使用接口的方式来定义一个函数需要符合的形状:

interface SearchFunc {
  (source: string, subString: string): boolean;
}

let mySearch: SearchFunc;
mySearch = function(source: string, subString: string) {
    return source.search(subString) !== -1;
}

当然也可以使用含有泛型的接口来定义函数的形状:

interface CreateArrayFunc {
    <T>(length: number, value: T): Array<T>;
}

let createArray: CreateArrayFunc;
createArray = function<T>(length: number, value: T): Array<T> {
    let result: T[] = [];
    for (let i = 0; i < length; i++) {
        result[i] = value;
    }
    return result;
}

createArray(3, 'x'); // ['x', 'x', 'x']

进一步,我们可以把泛型参数提前到接口名上:

interface CreateArrayFunc<T> {
    (length: number, value: T): Array<T>;
}

let createArray: CreateArrayFunc<any>;
createArray = function<T>(length: number, value: T): Array<T> {
    let result: T[] = [];
    for (let i = 0; i < length; i++) {
        result[i] = value;
    }
    return result;
}

createArray(3, 'x'); // ['x', 'x', 'x']

注意,此时在使用泛型接口的时候,需要定义泛型的类型。

7.5、泛型类

与泛型接口类似,泛型也可以用于类的类型定义中:

class GenericNumber<T> {
    zeroValue: T;
    add: (x: T, y: T) => T;
}

let myGenericNumber = new GenericNumber<number>();
myGenericNumber.zeroValue = 0;
myGenericNumber.add = function(x, y) { return x + y; };

7.6、泛型参数的默认类型

在 TypeScript 2.3 以后,我们可以为泛型中的类型参数指定默认类型。当使用泛型时没有在代码中直接指定类型参数,从实际值参数中也无法推测出时,这个默认类型就会起作用。

function createArray<T = string>(length: number, value: T): Array<T> {
    let result: T[] = [];
    for (let i = 0; i < length; i++) {
        result[i] = value;
    }
    return result;
}

八、声明合并

如果定义了两个相同名字的函数、接口或类,那么它们会合并成一个类型:

8.1、函数的合并

之前学习过,我们可以使用重载定义多个函数类型:

function reverse(x: number): number;
function reverse(x: string): string;
function reverse(x: number | string): number | string {
    if (typeof x === 'number') {
        return Number(x.toString().split('').reverse().join(''));
    } else if (typeof x === 'string') {
        return x.split('').reverse().join('');
    }
}

8.2、接口的合并

接口中的属性在合并时会简单的合并到一个接口中:

interface Alarm {
    price: number;
}
interface Alarm {
    weight: number;
}

相当于:

interface Alarm {
    price: number;
    weight: number;
}

注意,合并的属性的类型必须是唯一的:

interface Alarm {
    price: number;
}
interface Alarm {
    price: number;  // 虽然重复了,但是类型都是 `number`,所以不会报错
    weight: number;
}
interface Alarm {
    price: number;
}
interface Alarm {
    price: string;  // 类型不一致,会报错
    weight: number;
}

// index.ts(5,3): error TS2403: Subsequent variable declarations must have the same type.  Variable 'price' must be of type 'number', but here has type 'string'.

接口中方法的合并,与函数的合并一样:

interface Alarm {
    price: number;
    alert(s: string): string;
}
interface Alarm {
    weight: number;
    alert(s: string, n: number): string;
}

相当于:

interface Alarm {
    price: number;
    weight: number;
    alert(s: string): string;
    alert(s: string, n: number): string;
}

8.3、类的合并

类的合并与接口的合并规则一致。

标签:TypeScript,name,Days,笔记,number,学习,Animal,type,string
From: https://www.cnblogs.com/best/p/16472778.html

相关文章

  • Nginx学习
    参考:https://www.bilibili.com/video/BV13a411q753/?spm_id_from=333.337.search-card.all.click&vd_source=c85b4a015a69e82ad4f202bd9b87697fNginx概述Nginx是一款轻量......
  • 如何快速地学习新技术
    如何快速地学习新技术笔记于韩顺平的教学视频:如何学习Golang更高效分为5个步骤:新技术源于需求解决需求了解新技术快速入门案例深入学习技术新技术源于需求项目......
  • nodejs stream 背压处理学习
    内容是nodejs官方的,对于需要开发自己的stream是很值得学习参考的参考资料​​https://nodejs.org/en/docs/guides/backpressuring-in-streams/​​​​https://nodejs.org......
  • 集合详解——Robyn编程学习(Java)
    集合的框架体系本节课学习的目标:彻底搞明白集合的通用框架体系,以不变应万变。能够分清楚一个集合类型的应用与区别。首先明白collection和map的区别,collection接口时单......
  • 学习笔记:python素数问题中的缩进与循环
    python学习输出前1000的素数先来输出前10的素数表示我遇到的问题刚开始我的想法是:fornuminrange(1,11):#一个循环表示质数foriinrange(2,num):......
  • 新技术专题笔记
    特征提取,近看和远看(有细节丢失)好的方法是:既有全局信息,又有局部信息能不能让监测的窗口实现自适应,目前提取的窗口只有局部信息,没有全局信息,能不能把全局信息也安......
  • 深度学习:文本分类模型中的“蒸”功夫
    作者:Xingzhe.AI来自:行者AI 前言2018年Bert的横空出世给自然语言处理带来了巨大的突破,Bert及其衍生模型在多个文本处理下游任务中达到了SOTA的结果。但是这样的提升是......
  • gdb调试coredump学习
    转自:https://www.cnblogs.com/bodhitree/p/5850212.html1.查看发生coredump之后,用gdb进行查看core文件的内容,以定位文件中引发coredump的行.gdb[execfile][co......
  • 学习收-在 .NET 中使用 FluentValidation 进行参数验证
    安装FluentValidation新建了一个很简单的.NETCore的WebAPI程序,只有一个接口是用户注册,入参是一个User类,然后在Nuget中安装 FluentValidation。创建第一个验证对......
  • 今日学习Dos命令、计算机语言、jdk1.8安装
    Dos命令#cmd盘符切换将c盘切换到D输入D:#cmd查看当前目录下文件dir#切换目录cdchangedirectory例如E:\>cdF:#清理屏幕cls(clearscreen)#退出终端exit......