首页 > 其他分享 >网络流学习笔记

网络流学习笔记

时间:2023-07-14 10:22:05浏览次数:32  
标签:head 增广 int 网络 tot 学习 edge 笔记 dis

网络流

何为网络流

       想要弄清楚网络流,首先要知道网络的概念,通常在运筹学中,网络是指一个有向图$G\ =\ (V,E)$ 。其每条边$(u,v)\in E$都有一个权值$c(u,v)$,称为这条边的流量(Capacity),还有两个特殊的点,一个是源点(Source),一个是汇点(Sink)在图论中,网络流(英语:Network flow)在作为网络的有向图中分配流,使一条边的流量不会超过它的容量。

网络流的性质

1.容量限制

$\ \ \ \ $ 对于有向图\(G\)中的每一条边上所流经的流量不得超过其容量,即 \(f(u,v) \ ≤ \ c(u,v)\) 。

2.斜对称性

$\ \ \ \ $ 每条边的流量与相反边的流量之和为0,即 \(f(u,v) \ = \ -f(u,v)\)。

3.流守恒性

$\ \ \ \ $ 从源点流出的流量等于汇点流入的流量,即 \(\forall x\in V-\{s,t\},\sum_{(u,x)\in E}f(u,x)=\sum_{(x,v)\in E}f(x,v)\)

$\ \ \ \ $ 现在想象下面一个情景,工厂里有一个运输液体的传输管道,工厂在每条管道的都设置了防止倒流的装置,因为压强问题,所以每条管道在单位时间内的容量有限,这就是一个网络流模型了。

事实上,网络流的应用已遍及通讯、运输、电力、工程规划、任务分派、设备更新以及计算机辅助设计等众多领域。

网络流的常见问题

$\ \ \ \ $ 网络流问题中常见的有以下三种:最大流,最小割,费用流。

最大流

$\ \ \ \ $ 顾名思义,就是求从源点到汇点的最大流量。下面介绍几种常见的方法,其中Dinic算法几乎能完成所有与最大流相关的问题,因为他的复杂度比较优秀。

Ford-Fulkerson增广

$\ \ \ \ $ Ford-Fulkerson增广是计算最大流算法的一类统称,核心思想是贪心,通过寻找增广路来更新并求解最大流。其中,寻找增广路其实就是寻找从源点到汇点的剩余容量非空的路径,对于一条增广路,我们给每一条\((u,v)\)都加上等量的流量,以令整个网络的流量增加,这一过程被称为增广(Augment)。,但是,在执行过程中,会发现这样的思路有可能导致增广了一些原来不应存在于最大流的路径,怎么办?

$\ \ \ \ $ 我们可以利用网络流的斜对称性,在增广时进行退流操作,如果增广出了\((u,v)\)之间的双向流量实际上可以将经过\((v,u)\)的流量交换来抵消成单向流量。
退流操作带来的「抵消」效果使得我们无需担心我们按照「错误」的顺序选择了增广路。

接下类就是对Ford-Fulkerson增广算法的实现了,对于 Ford–Fulkerson 增广的不同实现,时间复杂度也各不相同。其中较主流的实现有 Edmonds–Karp, Dinic, SAP, ISAP 等算法,我会将自己理解了一些的算法介绍出来,至于其他的,下次一定(doge。

EK算法(Edmonds–Karp)

算法思想

EK算法就是通过BFS不断寻找增广路并不断更新最大流,直至在网络中再也找不到增广路为止。上面讲过,仅仅进行增广操作的话,最后得到的答案是错误的,因此需要退流,而为了追求速度,我们希望能在最短时间找到反向边,我们发现,利用邻接矩阵可以快速的找到反向边,因为邻阶矩阵就具有对称性,但是因为邻接矩阵相当于一个二维数组,无论是空间上还是时间上都不是很好,因此在网络流中的通常使用链式前向星来存储。其中,一个常用的技巧是,我们令边从偶数(通常为 0)开始编号,并在加边时总是紧接着加入其反向边使得它们的编号相邻。由此,我们可以令编号为 \(i\) 的边和编号为 $i \oplus 1 $的边始终保持互为反向边的关系。

存边代码如下:

inline void addedge(int u,int v,int c){
	edge[++tot].c = c;
	edge[tot].to = v;
	edge[tot].from = head[u];
	head[u] = tot;
	edge[++tot].c = 0;
	edge[tot].to = u;
	edge[tot].from = head[v];
	head[v] = tot;
}

更新代码如下:

inline void update(){
	int x = t;
	while (x != s){
		int v = pre[x];
		edge[v].c -= dis[t]; //c是剩余容量
		edge[v^1].c += dis[t];
		x = edge[v^1].to;
	}
	ans += dis[t];
}

适用范围

时间复杂度为\(O(nm^2)\),一般能处理\(10^3 ~ 10^4\)规模的网络。

完整代码 \(Code\)

#include <bits/stdc++.h>
#define MAXN 505050
#define int long long
using namespace std;
inline int read(){
	int x = 0,f = 1;
	char c = getchar();
	while (!isdigit(c)){
		if (c == '-'){
			f = -1;
		}
		c = getchar();
	}
	while (isdigit(c)){
		x = x*10+c-'0';
		c = getchar();
	}
	return x*f;
}
int n,m,s,t;
int tot = 1,vis[MAXN],pre[MAXN],head[MAXN],flag[2500][2500];
int dis[MAXN];
int ans;
struct node {
	int from,to,c,flow;
}edge[MAXN];
inline void addedge(int u,int v,int c){
	edge[++tot].to = v;
	edge[tot].from = head[u];
	edge[tot].c = c;
	head[u] = tot;
	edge[++tot].to = u;
	edge[tot].from = head[v];
	edge[tot].c = 0;
	head[v] = tot;
}
inline bool bfs(){
	for (int i=1;i<=n;i++){
		vis[i] = 0;
	}
	queue<int> q;
	q.push(s);
	vis[s] = 1;
	dis[s] = 2005020600;
	while (!q.empty()){
		int x = q.front();
		q.pop();
		for (int i=head[x];i;i=edge[i].from){
			int v = edge[i].to;
			if (!edge[i].c) continue;
			if (vis[v]) continue;
			dis[v] = min(dis[x],edge[i].c);
			pre[v] = i;
			q.push(v);
			vis[v] = 1;
			if (v == t)return 1;
		}
	}
	return 0;
}
inline void update(){
	int x = t;
	while (x!=s){
		int v = pre[x];
		edge[v].c-=dis[t];
		edge[v^1].c+=dis[t];
		x = edge[v^1].to;
	}
	ans+=dis[t];
}
signed main(){
	n = read(),m = read(),s = read(),t = read();
	for (int i=1;i<=m;i++){
		int u = read(),v = read(),w = read();
		if (flag[u][v] == 0){
			addedge(u,v,w);
			flag[u][v] = tot;
		}
		else {
			edge[flag[u][v]-1].c+=w;
		}
	}
	while (bfs()!=0){
		update();
	}
	cout<<ans<<'\n';
	return 0;
}

Dinic算法

Dinic算法在大部分图上的效率都十分优秀,因此也算是处理网络流问题中较为常见的,其时间复杂度是\(O(|V|^2|E|)\) 因为本人太菜不会证明,故不列出证明(

算法思想

EK算法可能会遍历整个残量网络(所有边均为其残量的 \(G_f(V,E_f)\)),而只为寻找一条增广路,显然只开了单线程,那么我们能不能找到一种方法,像开多线程一样,一次寻找多条增广路呢?

这时候就要我们的Dinic算法出马了。

分层图&\(DFS\)

考虑在进行增广前先对网络进行\(BFS\)分层,即根据节点到源点的的距离(dis)把节点分成若干层。对于每一个节点\(u\),我们用\(d(u)\)来表示他的层次,即\(s\)到\(x\)的最少边数,在残量网络中,满足\(d(u) = d(u)+1\)的边\((u,v)\)构成的子图被称为分层图,而分层图显然是一张有向无环图(Directed acyclic graph),为什么要构建分层图呢?在解释原因前,要先了解Dinic算法还要通过\(DFS\)进行增广,在\(DFS\)中,从\(S\)开始,每次我们从下一层的随机一个点开始跑,就这样一直跑到汇点,然后再一层层回溯回去,继续找这一层的另外的点再往下搜索,显然的,这样操作可以保证同时多增广的需求,然后对于每一层的最大流我们再进行合并,就能求出该网络图的最大流了。

算法框架

1.在残量网络上BFS求出节点的层次,构造分层图

2.在分层图上DFS寻找增广路,在回溯时同时更新边权

适用范围

时间复杂度为\(O(n^2m)\),一般能处理\(10^4 ~ 10^5\)的网络。

同时,Dinic算法还能用来求二分图,复杂度比匈牙利算法低,但还没学,所以在这就不介绍了。

代码 \(Code\)

#include <bits/stdc++.h>
using namespace std;
const long long inf=2005020600;
int n,m,s,t,u,v;
long long w,ans,dis[520010];
int tot=1,now[520010],head[520010]; 

struct node {
	int to,net;
	long long val;
} e[520010];

inline void add(int u,int v,long long w) {
	e[++tot].to=v;
	e[tot].val=w;
	e[tot].net=head[u];
	head[u]=tot;
	
	e[++tot].to=u;
	e[tot].val=0;
	e[tot].net=head[v];
	head[v]=tot;
}

inline int bfs() {  //在惨量网络中构造分层图 
	for(register int i=1;i<=n;i++) dis[i]=inf;
	queue<int> q;
	q.push(s);
	dis[s]=0;
	now[s]=head[s];
	while(!q.empty()) {
		int x=q.front();
		q.pop();
		for(register int i=head[x];i;i=e[i].net) {
			int v=e[i].to;
			if(e[i].val>0&&dis[v]==inf) {
				q.push(v);
				now[v]=head[v];
				dis[v]=dis[x]+1;
				if(v==t) return 1;
			}
		}
	}
	return 0;
}

inline int dfs(int x,long long sum) {  //sum是整条增广路对最大流的贡献
	if(x==t) return sum;
	long long k,res=0;  //k是当前最小的剩余容量 
	for(register int i=now[x];i&&sum;i=e[i].net) {
		now[x]=i;  //当前弧优化 
		int v=e[i].to;
		if(e[i].val>0&&(dis[v]==dis[x]+1)) {
			k=dfs(v,min(sum,e[i].val));
			if(k==0) dis[v]=inf;  //剪枝,去掉增广完毕的点 
			e[i].val-=k;
			e[i^1].val+=k;
			res+=k;  //res表示经过该点的所有流量和(相当于流出的总量) 
			sum-=k;  //sum表示经过该点的剩余流量 
		}
	}
	return res;
}

int main() {
	scanf("%d%d%d%d",&n,&m,&s,&t);
	for(register int i=1;i<=m;i++) {
		scanf("%d%d%lld",&u,&v,&w);
		add(u,v,w);
	}
	while(bfs()) {
		ans+=dfs(s,inf);  //流量守恒(流入=流出) 
	}
	printf("%lld",ans);
	return 0;
}

最小割和费用流还没学完,学完了再写(

标签:head,增广,int,网络,tot,学习,edge,笔记,dis
From: https://www.cnblogs.com/reasa/p/17546198.html

相关文章

  • 001 学习笔记--Access 常用操作
    Access数据库——设计试图,可进行表字段设计Access数据库——双击表,可维护数据常用CRUD帮助方法如下所示:usingSystem.Data;usingSystem.Data.OleDb;namespaceDBHelper{publicstaticclassAccessHelper{//privatestaticstringconnString=Confi......
  • 添加systemd服务学习
    cd/usr/lib/systemd/systemvioscardb.service[Unit]Description=oscarAfter=network.target[Service]Type=forkingExecStart=/opt/ShenTong/admin/oscardb_OSRDBdstartExecReload=/opt/ShenTong/admin/oscardb_OSRDBdreloadExecStop=/opt/ShenTong/admin/oscardb_OSRDB......
  • 【微服务学习-- 组件】 熔断器Hystrix
    一、什么是Hystrix  由于在我们访问页面时,可能会通过服务注册中心,用一个服务去调用另外一个服务,但是可能由于网络原因或者超时访问等情况,导致一个或者一些服务堆积,这样就可能会导致其他服务受到影响甚至崩溃,这种导致服务堆积的现象就被称为雪崩。     为了避免雪崩,N......
  • 方芳:2023-2024年上学期《农业概述》学习笔记黑板报(一)
        《农业概述》武汉市江夏路桥工程有限公司中央财经大学 经济管理学院    方   芳    15927602711第一篇自然-社会大系统中的农业第一-章农业的起源与发展农业在人类历史发展中的作用:(--)农业在原始社会的作用1.大大增加了食物的供应,从而......
  • Redis学习指南
    基础资料官方下载、安装、运行redis中文站thelittleredisbook(中文版)Redis几个认识误区 redis作者宣言建模Fast,easy,realtimemetricsusingRedisbitmaps监控、配置RedisCommander (在线运行命令。强烈不推荐,会把浏览器搞死!)RedisLive redmon(★推荐支持监控......
  • Docker学习路线4:Docker基础知识
    Docker是一个平台,简化了在轻量、可移植的容器中构建、打包和部署应用程序的过程。在本节中,我们将介绍Docker的基础知识、其组件以及您需要开始使用的关键命令。容器是什么?容器是一个轻量级、独立的可执行软件包,包含运行应用程序所需的所有依赖项(库、二进制文件和配置文件)。容器......
  • 计算机网络 笔记
    五层网络协议应用层(applicationlayer):直接为应用进程提供服务。应用层协议定义的是应用进程间通讯和交互的规则。不同的应用有着不同的应用层协议,如HTTP协议(万维网服务)、FTP协议(文件传输)、SMTP协议(电子邮件)、DNS(域名查询)等。运输层(transportlayer):报文段(TCP)/用户数......
  • NP问题笔记
    算法的时间复杂度指的是算法计算所需要的数量级,通常用O(·)表示。O(1)表示一个算法是常数阶,例如访问HashMap的某一个元素(随机存取)只需要一次运算即可。O(n)表示一个算法是线性阶,例如寻找数组Array中最大的元素,需要遍历数组(顺序表)的所有元素。O(logn)是对数阶,比O(n)更快,例如有序......
  • 网络流学习笔记
    前言因为网络流非常的重要,并且之前的理解都比较模糊,模板什么的整理的也不全,所以写一篇博客用来整理网络流的知识。也是供自己复习使用。一些基本的定义流量大致思路网络流,其实就是一种在图上的带悔贪心,网络流有很多种做法,这里主要介绍dinic算法。在网络流中,最重要的就是反......
  • 【Sword系列】第七届全国残疾人职业技能大赛样题-网络安全-这音乐好难听
    前言音频隐写是指将隐藏的信息嵌入到音频信号中,使得这些信息对人耳听不出来,但可以通过特定的解码方式提取出来。以下是音频隐写的几种具体种类:LSB隐写法:最常见的音频隐写技术之一,将要隐藏的信息以二进制形式嵌入到音频信号中最低有效位(LSB)中。时间域隐写法:通常利用音频信号......