转自:https://blog.csdn.net/weixin_42813232/article/details/125577142
Rpmsg与Virtio介绍
目录
Rpmsg与Virtio介绍
一、Rpmsg的介绍
1、rpmsg_core.c的详细介绍
1.1 rpmsg_bus结构体
1.2 rpmsg_dev_match()函数
1.3 rpmsg_dev_probe()函数
1.4 rpmsg_register_device () 函数的介绍
1.5 __register_rpmsg_driver() 函数的介绍
1.6 rpmsg_create_ept、rpmsg_send、rpmsg_trysend、rpmsg_poll
2、rpmsg_char.c的详细介绍
2.1 rpmsg_chrdev_driver结构体
2.2 rpmsg_chrdev_probe()函数
2.3 rpmsg_chrdev_remove()函数
二、virtio_rpmsg_bus.c 的详细介绍
1、virtio_ipc_driver 结构体的介绍
2、rpmsg_probe()函数的介绍
3、__rpmsg_create_ept()介绍
4、 virtio_endpoint_ops结构体介绍
5、rpmsg_ns_cb() 函数的介绍
6、rpmsg_create_channel() 函数的介绍
7、virtio_rpmsg_ops() 结构体的介绍
三、Virtio的介绍
1、virtio.c 的介绍
1.1 virtio_bus结构体的介绍
1.2 register_virtio_driver() 函数的介绍
1.3 register_virtio_device() 函数的介绍
1.4 virtio_dev_probe 函数的介绍
1.5 virtio_dev_match 函数的介绍
2、virtio_input.c的介绍
2.1 virtio_input_driver结构体介绍
四、virtio_device、virtio_driver、virtio_bus、rpmsg_device、rpmsg_drivver、rpmsg_bus如何如何联系且运作起来
1、联系的建立
2、运作
一、Rpmsg的介绍
源码所在路径:drivers\rpmsg\
Kconfig
Makefile
qcom_glink_native.c
qcom_glink_native.h
qcom_glink_rpm.c
qcom_glink_smem.c
qcom_smd.c
rpmsg_char.c
rpmsg_core.c
rpmsg_internal.h
virtio_rpmsg_bus.c
结合官方所提供的rpmsg framwork框架图,我们可知:
Rpmsg的整体框架是Rpmsg Bus、Rpmsg Device与Rpmsg Driver所构成,即Linux中的Bus模型;
Rpmsg Bus:由rpmsg_core.c文件所构建,负责
bus的构建;
Driver-device的match;
device的probe与remove;
uevent机制;
static struct bus_type rpmsg_bus = {
.name = "rpmsg",
.match = rpmsg_dev_match,
.dev_groups = rpmsg_dev_groups,
.uevent = rpmsg_uevent,
.probe = rpmsg_dev_probe,
.remove = rpmsg_dev_remove,
};
Rpmsg Driver:由rpmsg_char.c所register(上图中还有两个文件,不在该章节进行介绍),负责:
register char driver;
Remove char driver;
该driver name 为 rpmsg_chrdev;
static struct rpmsg_driver rpmsg_chrdev_driver = {
.probe = rpmsg_chrdev_probe,
.remove = rpmsg_chrdev_remove,
.drv = {
.name = "rpmsg_chrdev",
},
};
Rpmsg Device:该层一开始是只有Virtio框架所构成的,后面添加了Glink与SMD架构(主要为高通所用),故主要介绍Virtio框架,通过上图可知其主要由virtio_rpmsg_bus.c 文件所维护:
该文件比较特殊,其是Virtio BUS与Rpmsg Bus的连接层,该文件中定义了virtio driver;
static struct virtio_driver virtio_ipc_driver = {
.feature_table = features,
.feature_table_size = ARRAY_SIZE(features),
.driver.name = KBUILD_MODNAME,
.driver.owner = THIS_MODULE,
.id_table = id_table,
.probe = rpmsg_probe,
.remove = rpmsg_remove,
};
该virtio driver会向Rpmsg Bus register rpmsg device,这样一来Rpmsg Bus与Virtio Bus就通过该rpmsg device联系起来了。
1、rpmsg_core.c的详细介绍
1.1 rpmsg_bus结构体
结构体定义如下,可以看到该bus的名为rpmsg:
static struct bus_type rpmsg_bus = {
.name = "rpmsg",
.match = rpmsg_dev_match,
.dev_groups = rpmsg_dev_groups,
.uevent = rpmsg_uevent,
.probe = rpmsg_dev_probe,
.remove = rpmsg_dev_remove,
};
该结构体会在rpmsg_init()中调用bus_register函数:
完成bus_type_private的初始化、创建并注册的这条总线需要的目录,该目录为rpmsg;
在rpmsg目录下创建/device /driver 目录;
初始化这条总线上的设备链表:struct klist klist_devices;
初始化这条总线上的驱动链表:struct klist klist_drivers;
static int __init rpmsg_init(void)
{
int ret;
ret = bus_register(&rpmsg_bus);
if (ret)
pr_err("failed to register rpmsg bus: %d\n", ret);
return ret;
}
而该rpmsg_init函数会在注册进postcore_initcall,这样当kernel起来时就会调用根据initcall的顺序调用到rpmsg_init,进而注册Rpmsg Bus,为其准备所需要的资源。
postcore_initcall(rpmsg_init);
1
1.2 rpmsg_dev_match()函数
问:在Bus中,如何调入到Rpmsg Bus的match函数呢
答:当有driver/device register是会触发Bus中的bus_add_driver/bus_add_device继而触发Bus–>match/probe函数。
在该match函数中,匹配顺序如下:
static int rpmsg_dev_match(struct device *dev, struct device_driver *drv)
{
struct rpmsg_device *rpdev = to_rpmsg_device(dev);
struct rpmsg_driver *rpdrv = to_rpmsg_driver(drv);
const struct rpmsg_device_id *ids = rpdrv->id_table;
unsigned int i;
/* 针对特殊情况,dev中的driver_override被设置,则只匹配和driver_override名字相同的驱动程序 */
if (rpdev->driver_override)
return !strcmp(rpdev->driver_override, drv->name);
/* 后根据dev->id.mane与driver id_table中每个name进行匹配 */
if (ids)
for (i = 0; ids[i].name[0]; i++)
if (rpmsg_id_match(rpdev, &ids[i]))
return 1;
/* 最后以设备树进行匹配 */
return of_driver_match_device(dev, drv);
}
1.3 rpmsg_dev_probe()函数
当Rpmsg Bus->match()成功后,则Bus会调用Rpmsg Bus->probe对driver与device进行bind
/*
* when an rpmsg driver is probed with a channel, we seamlessly create
* it an endpoint, binding its rx callback to a unique local rpmsg
* address.
*
* if we need to, we also announce about this channel to the remote
* processor (needed in case the driver is exposing an rpmsg service).
*/
static int rpmsg_dev_probe(struct device *dev)
{
struct rpmsg_device *rpdev = to_rpmsg_device(dev);
struct rpmsg_driver *rpdrv = to_rpmsg_driver(rpdev->dev.driver);
struct rpmsg_channel_info chinfo = {};
struct rpmsg_endpoint *ept = NULL;
int err;
/* 电源管理相关 */
err = dev_pm_domain_attach(dev, true);
if (err)
goto out;
/* driver->callback存在会进行调用,但是rpmsg_char.c中的driver->callback == NULL
* 此处可以客制化自己的driver
*/
if (rpdrv->callback) {
/* 以device->id.name作为rpsmg_channel->name
* channel的src为device->src
*/
strncpy(chinfo.name, rpdev->id.name, RPMSG_NAME_SIZE);
chinfo.src = rpdev->src;
chinfo.dst = RPMSG_ADDR_ANY;
/* 会以回调的形式调用device->ops->create_ept,该ept->cb(rx_cb) =rpdrv->callback */
ept = rpmsg_create_ept(rpdev, rpdrv->callback, NULL, chinfo);
if (!ept) {
dev_err(dev, "failed to create endpoint\n");
err = -ENOMEM;
goto out;
}
/* 把创建的ept和addr存储到device中 */
rpdev->ept = ept;
rpdev->src = ept->addr;
}
/* 调用driver->probe == rpmsg_chrdev_probe */
err = rpdrv->probe(rpdev);
if (err) {
dev_err(dev, "%s: failed: %d\n", __func__, err);
if (ept)
rpmsg_destroy_ept(ept);
goto out;
}
/* 调用device->ops->announce_create == virtio_rpmsg_announce_create */
if (ept && rpdev->ops->announce_create)
err = rpdev->ops->announce_create(rpdev);
out:
return err;
}
1.4 rpmsg_register_device () 函数的介绍
int rpmsg_register_device(struct rpmsg_device *rpdev)
{
struct device *dev = &rpdev->dev;
int ret;
dev_set_name(&rpdev->dev, "%s.%s.%d.%d", dev_name(dev->parent),
rpdev->id.name, rpdev->src, rpdev->dst);
rpdev->dev.bus = &rpmsg_bus;
ret = device_register(&rpdev->dev);
if (ret) {
dev_err(dev, "device_register failed: %d\n", ret);
put_device(&rpdev->dev);
}
return ret;
}
EXPORT_SYMBOL(rpmsg_register_device);
1.5 __register_rpmsg_driver() 函数的介绍
int __register_rpmsg_driver(struct rpmsg_driver *rpdrv, struct module *owner)
{
rpdrv->drv.bus = &rpmsg_bus;
rpdrv->drv.owner = owner;
return driver_register(&rpdrv->drv);
}
EXPORT_SYMBOL(__register_rpmsg_driver);C
1.6 rpmsg_create_ept、rpmsg_send、rpmsg_trysend、rpmsg_poll
从函数实体可以看到,这些operation都是以回调的方式调用,所以进行客制化的实现;
struct rpmsg_endpoint *rpmsg_create_ept(struct rpmsg_device *rpdev,
rpmsg_rx_cb_t cb, void *priv,
struct rpmsg_channel_info chinfo)
{
if (WARN_ON(!rpdev))
return NULL;
return rpdev->ops->create_ept(rpdev, cb, priv, chinfo);
}
EXPORT_SYMBOL(rpmsg_create_ept);
/**
* rpmsg_destroy_ept() - destroy an existing rpmsg endpoint
* @ept: endpoing to destroy
*
* Should be used by drivers to destroy an rpmsg endpoint previously
* created with rpmsg_create_ept(). As with other types of "free" NULL
* is a valid parameter.
*/
void rpmsg_destroy_ept(struct rpmsg_endpoint *ept)
{
if (ept)
ept->ops->destroy_ept(ept);
}
EXPORT_SYMBOL(rpmsg_destroy_ept);
/**
* rpmsg_send() - send a message across to the remote processor
* @ept: the rpmsg endpoint
* @data: payload of message
* @len: length of payload
*
* This function sends @data of length @len on the @ept endpoint.
* The message will be sent to the remote processor which the @ept
* endpoint belongs to, using @ept's address and its associated rpmsg
* device destination addresses.
* In case there are no TX buffers available, the function will block until
* one becomes available, or a timeout of 15 seconds elapses. When the latter
* happens, -ERESTARTSYS is returned.
*
* Can only be called from process context (for now).
*
* Returns 0 on success and an appropriate error value on failure.
*/
int rpmsg_send(struct rpmsg_endpoint *ept, void *data, int len)
{
if (WARN_ON(!ept))
return -EINVAL;
if (!ept->ops->send)
return -ENXIO;
return ept->ops->send(ept, data, len);
}
EXPORT_SYMBOL(rpmsg_send);
/**
* rpmsg_sendto() - send a message across to the remote processor, specify dst
* @ept: the rpmsg endpoint
* @data: payload of message
* @len: length of payload
* @dst: destination address
*
* This function sends @data of length @len to the remote @dst address.
* The message will be sent to the remote processor which the @ept
* endpoint belongs to, using @ept's address as source.
* In case there are no TX buffers available, the function will block until
* one becomes available, or a timeout of 15 seconds elapses. When the latter
* happens, -ERESTARTSYS is returned.
*
* Can only be called from process context (for now).
*
* Returns 0 on success and an appropriate error value on failure.
*/
int rpmsg_sendto(struct rpmsg_endpoint *ept, void *data, int len, u32 dst)
{
if (WARN_ON(!ept))
return -EINVAL;
if (!ept->ops->sendto)
return -ENXIO;
return ept->ops->sendto(ept, data, len, dst);
}
EXPORT_SYMBOL(rpmsg_sendto);
/**
* rpmsg_send_offchannel() - send a message using explicit src/dst addresses
* @ept: the rpmsg endpoint
* @src: source address
* @dst: destination address
* @data: payload of message
* @len: length of payload
*
* This function sends @data of length @len to the remote @dst address,
* and uses @src as the source address.
* The message will be sent to the remote processor which the @ept
* endpoint belongs to.
* In case there are no TX buffers available, the function will block until
* one becomes available, or a timeout of 15 seconds elapses. When the latter
* happens, -ERESTARTSYS is returned.
*
* Can only be called from process context (for now).
*
* Returns 0 on success and an appropriate error value on failure.
*/
int rpmsg_send_offchannel(struct rpmsg_endpoint *ept, u32 src, u32 dst,
void *data, int len)
{
if (WARN_ON(!ept))
return -EINVAL;
if (!ept->ops->send_offchannel)
return -ENXIO;
return ept->ops->send_offchannel(ept, src, dst, data, len);
}
EXPORT_SYMBOL(rpmsg_send_offchannel);
/**
* rpmsg_send() - send a message across to the remote processor
* @ept: the rpmsg endpoint
* @data: payload of message
* @len: length of payload
*
* This function sends @data of length @len on the @ept endpoint.
* The message will be sent to the remote processor which the @ept
* endpoint belongs to, using @ept's address as source and its associated
* rpdev's address as destination.
* In case there are no TX buffers available, the function will immediately
* return -ENOMEM without waiting until one becomes available.
*
* Can only be called from process context (for now).
*
* Returns 0 on success and an appropriate error value on failure.
*/
int rpmsg_trysend(struct rpmsg_endpoint *ept, void *data, int len)
{
if (WARN_ON(!ept))
return -EINVAL;
if (!ept->ops->trysend)
return -ENXIO;
return ept->ops->trysend(ept, data, len);
}
EXPORT_SYMBOL(rpmsg_trysend);
/**
* rpmsg_sendto() - send a message across to the remote processor, specify dst
* @ept: the rpmsg endpoint
* @data: payload of message
* @len: length of payload
* @dst: destination address
*
* This function sends @data of length @len to the remote @dst address.
* The message will be sent to the remote processor which the @ept
* endpoint belongs to, using @ept's address as source.
* In case there are no TX buffers available, the function will immediately
* return -ENOMEM without waiting until one becomes available.
*
* Can only be called from process context (for now).
*
* Returns 0 on success and an appropriate error value on failure.
*/
int rpmsg_trysendto(struct rpmsg_endpoint *ept, void *data, int len, u32 dst)
{
if (WARN_ON(!ept))
return -EINVAL;
if (!ept->ops->trysendto)
return -ENXIO;
return ept->ops->trysendto(ept, data, len, dst);
}
EXPORT_SYMBOL(rpmsg_trysendto);
/**
* rpmsg_poll() - poll the endpoint's send buffers
* @ept: the rpmsg endpoint
* @filp: file for poll_wait()
* @wait: poll_table for poll_wait()
*
* Returns mask representing the current state of the endpoint's send buffers
*/
__poll_t rpmsg_poll(struct rpmsg_endpoint *ept, struct file *filp,
poll_table *wait)
{
if (WARN_ON(!ept))
return 0;
if (!ept->ops->poll)
return 0;
return ept->ops->poll(ept, filp, wait);
}
EXPORT_SYMBOL(rpmsg_poll);
/**
* rpmsg_send_offchannel() - send a message using explicit src/dst addresses
* @ept: the rpmsg endpoint
* @src: source address
* @dst: destination address
* @data: payload of message
* @len: length of payload
*
* This function sends @data of length @len to the remote @dst address,
* and uses @src as the source address.
* The message will be sent to the remote processor which the @ept
* endpoint belongs to.
* In case there are no TX buffers available, the function will immediately
* return -ENOMEM without waiting until one becomes available.
*
* Can only be called from process context (for now).
*
* Returns 0 on success and an appropriate error value on failure.
*/
int rpmsg_trysend_offchannel(struct rpmsg_endpoint *ept, u32 src, u32 dst,
void *data, int len)
{
if (WARN_ON(!ept))
return -EINVAL;
if (!ept->ops->trysend_offchannel)
return -ENXIO;
return ept->ops->trysend_offchannel(ept, src, dst, data, len);
}
EXPORT_SYMBOL(rpmsg_trysend_offchannel);
2、rpmsg_char.c的详细介绍
2.1 rpmsg_chrdev_driver结构体
定义如下:
static struct rpmsg_driver rpmsg_chrdev_driver = {
.probe = rpmsg_chrdev_probe,
.remove = rpmsg_chrdev_remove,
.drv = {
.name = "rpmsg_chrdev",
},
};
从该结构体定义可以看出其是一个字符设备,在rpmsg_char_init()会register dirver
static int rpmsg_char_init(void)
{
int ret;
/* 系统自动分配设备号 */
ret = alloc_chrdev_region(&rpmsg_major, 0, RPMSG_DEV_MAX, "rpmsg");
if (ret < 0) {
pr_err("rpmsg: failed to allocate char dev region\n");
return ret;
}
/* 创建/sys/class/rpmsg设备类 */
rpmsg_class = class_create(THIS_MODULE, "rpmsg");
if (IS_ERR(rpmsg_class)) {
pr_err("failed to create rpmsg class\n");
unregister_chrdev_region(rpmsg_major, RPMSG_DEV_MAX);
return PTR_ERR(rpmsg_class);
}
/* 注册rpmsg driver,实质上是赋值操作 */
ret = register_rpmsg_driver(&rpmsg_chrdev_driver);
if (ret < 0) {
pr_err("rpmsgchr: failed to register rpmsg driver\n");
class_destroy(rpmsg_class);
unregister_chrdev_region(rpmsg_major, RPMSG_DEV_MAX);
}
return ret;
}
#define register_rpmsg_driver(drv) \
__register_rpmsg_driver(drv, THIS_MODULE)
int __register_rpmsg_driver(struct rpmsg_driver *rpdrv, struct module *owner)
{
rpdrv->drv.bus = &rpmsg_bus;
rpdrv->drv.owner = owner;
return driver_register(&rpdrv->drv);
}
int driver_register(struct device_driver *drv)
{
int ret;
struct device_driver *other;
if (!drv->bus->p) {
pr_err("Driver '%s' was unable to register with bus_type '%s' because the bus was not initialized.\n",
drv->name, drv->bus->name);
return -EINVAL;
}
/* 检查driver与bus的函数是否有冲突 */
if ((drv->bus->probe && drv->probe) ||
(drv->bus->remove && drv->remove) ||
(drv->bus->shutdown && drv->shutdown))
printk(KERN_WARNING "Driver '%s' needs updating - please use "
"bus_type methods\n", drv->name);
/* driver找到bus->p->drivers_kset中的空位(先会判断这个list中是否已经存在同名的driver) */
other = driver_find(drv->name, drv->bus);
if (other) {
printk(KERN_ERR "Error: Driver '%s' is already registered, "
"aborting...\n", drv->name);
return -EBUSY;
}
/* bus中添加driver */
ret = bus_add_driver(drv);
if (ret)
return ret;
/* 如果grop不为空的话,将在驱动文件夹下创建以group名字的子文件夹,然后在子文件夹下添加group的属性文件 */
ret = driver_add_groups(drv, drv->groups);
if (ret) {
bus_remove_driver(drv);
return ret;
}
kobject_uevent(&drv->p->kobj, KOBJ_ADD);
return ret;
}
而rpmsg_char_init会在驱动加载时被调用
postcore_initcall(rpmsg_char_init);
2.2 rpmsg_chrdev_probe()函数
问:该函数在何时被调用呢?
答:
在bus中,若driver,会触发bus中的bus_add_driver->driver_attach->__driver_attach>driver_probe_device->really_probe->
if (dev->bus->probe) {
ret = dev->bus->probe(dev);
if (ret)
goto probe_failed;
} else if (drv->probe) {
ret = drv->probe(dev);
if (ret)
goto probe_failed;
}
在bus中,若device add,会触发bus中device_add->bus_add_device,if(dev->bus)bus_probe_device->device_initial_probe->__device_attach->这里有两条路if(dev->driver) device_bind_driver, (走else)**else** **bus_for_each_drv(dev->bus, NULL, &data,__device_attach_driver)**;->driver_match_device->driver_probe_device->>really_probe->
if (dev->bus->probe) {
ret = dev->bus->probe(dev);
if (ret)
goto probe_failed;
} else if (drv->probe) {
ret = drv->probe(dev);
if (ret)
goto probe_failed;
}
从上面分析可以看到bus->probe优先级比driver->probe高。
问:那是不是表示rpmsg driver->probe永远也不会被调用到?
答:不会,应为rpmsg bus->probe()中会调用rpmsg driver->probe;
接下来分析rpmsg_chrdev_probe()函数中主要做的事情。
前提:刚刚分析了,只有在driver match device后才会调用到rpmsg bus probe进而调用到rpmsg driver probe,故此时对应的device已经找到了。
static int rpmsg_chrdev_probe(struct rpmsg_device *rpdev)
{
struct rpmsg_ctrldev *ctrldev;
struct device *dev;
int ret;
/* 初始化rpmsg 控制设备,该控制设备保存着已经被实例化的ept device*/
ctrldev = kzalloc(sizeof(*ctrldev), GFP_KERNEL);
if (!ctrldev)
return -ENOMEM;
ctrldev->rpdev = rpdev;
dev = &ctrldev->dev;
device_initialize(dev);
dev->parent = &rpdev->dev;
dev->class = rpmsg_class;
/* 为该控制设备添加字符设备,以便后续支持ioctl */
cdev_init(&ctrldev->cdev, &rpmsg_ctrldev_fops);
ctrldev->cdev.owner = THIS_MODULE;
/* 获取ida数组中一个有效的index,并获取此设备号 */
ret = ida_simple_get(&rpmsg_minor_ida, 0, RPMSG_DEV_MAX, GFP_KERNEL);
if (ret < 0)
goto free_ctrldev;
dev->devt = MKDEV(MAJOR(rpmsg_major), ret);
/* 获取ida数组中一个有效的index,并设置名字 */
ret = ida_simple_get(&rpmsg_ctrl_ida, 0, 0, GFP_KERNEL);
if (ret < 0)
goto free_minor_ida;
dev->id = ret;
dev_set_name(&ctrldev->dev, "rpmsg_ctrl%d", ret);
/* 填充设备号 */
ret = cdev_add(&ctrldev->cdev, dev->devt, 1);
if (ret)
goto free_ctrl_ida;
/* We can now rely on the release function for cleanup */
dev->release = rpmsg_ctrldev_release_device;
/* 添加字符设备,后续可以通过dev找到所对应的rpmsg_ctrldev,进而可以会找到rpmsg device */
ret = device_add(dev);
if (ret) {
dev_err(&rpdev->dev, "device_add failed: %d\n", ret);
put_device(dev);
}
dev_set_drvdata(&rpdev->dev, ctrldev);
return ret;
free_ctrl_ida:
ida_simple_remove(&rpmsg_ctrl_ida, dev->id);
free_minor_ida:
ida_simple_remove(&rpmsg_minor_ida, MINOR(dev->devt));
free_ctrldev:
put_device(dev);
kfree(ctrldev);
return ret;
}
2.3 rpmsg_chrdev_remove()函数
从下面的函数可以知道,当该driver remove,则改在在该driver下的所有rpmsg device会一个个被调用rpmsg_eptdev_destroy-> ept->ops->destroy_ept,可以看到每个rpmsg device维护自己的device函数。
那么这里留一个问题,什么时候rpmsg_create_ept?
static void rpmsg_chrdev_remove(struct rpmsg_device *rpdev)
{
struct rpmsg_ctrldev *ctrldev = dev_get_drvdata(&rpdev->dev);
int ret;
/* Destroy all endpoints */
ret = device_for_each_child(&ctrldev->dev, NULL, rpmsg_eptdev_destroy);
if (ret)
dev_warn(&rpdev->dev, "failed to nuke endpoints: %d\n", ret);
device_del(&ctrldev->dev);
put_device(&ctrldev->dev);
}
二、virtio_rpmsg_bus.c 的详细介绍
1、virtio_ipc_driver 结构体的介绍
static struct virtio_device_id id_table[] = {
{ VIRTIO_ID_RPMSG, VIRTIO_DEV_ANY_ID },
{ 0 },
};
static unsigned int features[] = {
VIRTIO_RPMSG_F_NS,
};
static struct virtio_driver virtio_ipc_driver = {
.feature_table = features,
.feature_table_size = ARRAY_SIZE(features),
.driver.name = KBUILD_MODNAME,
.driver.owner = THIS_MODULE,
.id_table = id_table,
.probe = rpmsg_probe,
.remove = rpmsg_remove,
};
从上面结构体中的变量可以看到,该virtio_dirver有属于自己的probo与remove函数,故可以猜测该dirver是属于virtio_bus的(该猜测在后续中会印证)。
该结构体会在 subsys_initcall(rpmsg_init); --> register_virtio_driver(&virtio_ipc_driver);中被注册,通过查看register_virtio_dirver函数:
该virtio_driver被设为的属于virtio_bus —>这就印证了刚刚的猜测;
通过driver_register将virtio_driver register 到 virtio_bus中;
int register_virtio_driver(struct virtio_driver *driver)
{
/* Catch this early. */
BUG_ON(driver->feature_table_size && !driver->feature_table);
driver->driver.bus = &virtio_bus;
return driver_register(&driver->driver);
}
2、rpmsg_probe()函数的介绍
注意该函数是virtio_driver中的probe函数。
源码如下图:
主要做了如下的事情:
根据vdev->config->find_vqs(),根据names作为匹配原则期望找到对应的rx与tx virtqueue;
根据找到的rx/tx,将其赋值到virtproc_info->virqueue[0/1] ;
统计rx/tx 所需要的buf size/buf num/total buf space,并为需要的buf申请DMA memory;
DMA memory对半分给若rx/tx;
对每一个rx buf进行vring的初始化;
将上述virtproc_info初始化赋值给该virtio_device;
为支持remote process,创建一个以RPMSG_NS_ADDR的virtproc_info->ns_ept,支持后续的name service announcement;
准备kick_off并告知remote process notify
在该函数中涉及到很多数据结构,统一的来说:
先根据名字,找到rx/tx virtqueue(vqs);
将rx/tx virtqueue存储到virtproc_info(vrq)->rvq/tvq;
初始化vrq(rvq vring、tvq info、ns_ept);
将vrq存储到virtio_device中;
static int rpmsg_probe(struct virtio_device *vdev)
{
vq_callback_t *vq_cbs[] = { rpmsg_recv_done, rpmsg_xmit_done };
static const char * const names[] = { "input", "output" };
struct virtqueue *vqs[2];
struct virtproc_info *vrp;
void *bufs_va;
int err = 0, i;
size_t total_buf_space;
bool notify;
vrp = kzalloc(sizeof(*vrp), GFP_KERNEL);
if (!vrp)
return -ENOMEM;
vrp->vdev = vdev;
idr_init(&vrp->endpoints);
mutex_init(&vrp->endpoints_lock);
mutex_init(&vrp->tx_lock);
init_waitqueue_head(&vrp->sendq);
/* 根据vdev->config->find_vqs(),根据names作为匹配原则期望找到对应的rx与tx
* 其中rx与tx对应各自的virtqueue
*/
err = virtio_find_vqs(vdev, 2, vqs, vq_cbs, names, NULL);
if (err)
goto free_vrp;
/* 根据找到的rx/tx,将其赋值到virtproc_info->virqueue[0/1] */
vrp->rvq = vqs[0];
vrp->svq = vqs[1];
/* 期望rx/tx virtqueue对应的vring size是对称的 */
WARN_ON(virtqueue_get_vring_size(vrp->rvq) !=
virtqueue_get_vring_size(vrp->svq));
/* 如果rx vring size小于MAX_RPMSG_NUM_BUFS / 2,则后续可利用的buf num为最小size * 2
* 否则以最大的MAX_RPMS_NUM_BUFS为准
*/
if (virtqueue_get_vring_size(vrp->rvq) < MAX_RPMSG_NUM_BUFS / 2)
vrp->num_bufs = virtqueue_get_vring_size(vrp->rvq) * 2;
else
vrp->num_bufs = MAX_RPMSG_NUM_BUFS;
vrp->buf_size = MAX_RPMSG_BUF_SIZE;
total_buf_space = vrp->num_bufs * vrp->buf_size;
/* 根据统计所得的buf space 申请一段连续的DMA memory */
bufs_va = dma_alloc_coherent(vdev->dev.parent->parent,
total_buf_space, &vrp->bufs_dma,
GFP_KERNEL);
if (!bufs_va) {
err = -ENOMEM;
goto vqs_del;
}
dev_dbg(&vdev->dev, "buffers: va %p, dma %pad\n",
bufs_va, &vrp->bufs_dma);
/* 将上述的DMA内存对半给rx与tx的buf, DMA memory的起始地址在rx */
vrp->rbufs = bufs_va;
vrp->sbufs = bufs_va + total_buf_space / 2;
/* 根据rx buf num对每一个buf进行初始化 */
for (i = 0; i < vrp->num_bufs / 2; i++) {
struct scatterlist sg;
void *cpu_addr = vrp->rbufs + i * vrp->buf_size; //获取每一个rx buf cpu addr
rpmsg_sg_init(&sg, cpu_addr, vrp->buf_size); //根据cpu addr初始化一个散列表
err = virtqueue_add_inbuf(vrp->rvq, &sg, 1, cpu_addr, //根据散列表与cpu addr,初始化rx vring inbuf
GFP_KERNEL);
WARN_ON(err); /* sanity check; this can't really happen */
}
/* 设置相关的tx flag,来抑制发送行为 */
virtqueue_disable_cb(vrp->svq);
/* 将virtproc_info赋值给该virtio_device */
vdev->priv = vrp;
/* 创建一个RPMSG_NS_ADDR的ept,以供支持remote process */
if (virtio_has_feature(vdev, VIRTIO_RPMSG_F_NS)) {
/* a dedicated endpoint handles the name service msgs */
vrp->ns_ept = __rpmsg_create_ept(vrp, NULL, rpmsg_ns_cb,
vrp, RPMSG_NS_ADDR);
if (!vrp->ns_ept) {
dev_err(&vdev->dev, "failed to create the ns ept\n");
err = -ENOMEM;
goto free_coherent;
}
}
/* 准备事件相关的kick off(中断、标志) */
notify = virtqueue_kick_prepare(vrp->rvq);
/* 将该virtio device设置成ready status. */
virtio_device_ready(vdev);
/* 告知remote device可以发消息了,notify一般为戳中断的形式 */
if (notify)
virtqueue_notify(vrp->rvq);
dev_info(&vdev->dev, "rpmsg host is online\n");
return 0;
free_coherent:
dma_free_coherent(vdev->dev.parent->parent, total_buf_space,
bufs_va, vrp->bufs_dma);
vqs_del:
vdev->config->del_vqs(vrp->vdev);
free_vrp:
kfree(vrp);
return err;
}
3、__rpmsg_create_ept()介绍
其主要将该ns_ept的ops = virtio_endpoint_ops,从上面的函数调用可以知道,传进去的rpdev == NULL,所以这个函数还未与rpmsg_bus建立联系。
问:何时才与rpmsg _bus建立联系呢?
答:(vrp->ns_ept->cb == rpmsg_ns_cb)–>rpmsg_create_channel–>rpmsg_register_device();
问:何时才调用rpmsg_ns_cb?
答:从之前的分析,都是对virtio_driver结构体的分析,应该在后续有virtio_device match时候,调用到virtio_bus->probe --> virtio_driver->probe -->为这个virtio_device 进行初始化操作,此时virtio_device->priv->ns_ept = ept,其中ept->rpdev == NULL,后续可使用这个virtio_device 进行name service rpmsg_create_channel->rpmsg_register_device,进行rpmsg_device的真正建立。进而virtio_device对应的virtio_driver有真正的rpdev,使得virtio_driver、virtio_device通过rpmsg_device与rpmsg_bus打交道。
static struct rpmsg_endpoint *__rpmsg_create_ept(struct virtproc_info *vrp,
struct rpmsg_device *rpdev,
rpmsg_rx_cb_t cb,
void *priv, u32 addr)
{
int id_min, id_max, id;
struct rpmsg_endpoint *ept;
struct device *dev = rpdev ? &rpdev->dev : &vrp->vdev->dev;
ept = kzalloc(sizeof(*ept), GFP_KERNEL);
if (!ept)
return NULL;
kref_init(&ept->refcount);
mutex_init(&ept->cb_lock);
/* 初始化ept */
ept->rpdev = rpdev;
ept->cb = cb;
ept->priv = priv;
ept->ops = &virtio_endpoint_ops; /* 该virproc_info->ns_ept->ops = virtio_endpoint_ops */
/* do we need to allocate a local address ? */
if (addr == RPMSG_ADDR_ANY) {
id_min = RPMSG_RESERVED_ADDRESSES;
id_max = 0;
} else {
id_min = addr;
id_max = addr + 1;
}
mutex_lock(&vrp->endpoints_lock);
/* bind the endpoint to an rpmsg address (and allocate one if needed) */
id = idr_alloc(&vrp->endpoints, ept, id_min, id_max, GFP_KERNEL);
if (id < 0) {
dev_err(dev, "idr_alloc failed: %d\n", id);
goto free_ept;
}
ept->addr = id;
mutex_unlock(&vrp->endpoints_lock);
return ept;
free_ept:
mutex_unlock(&vrp->endpoints_lock);
kref_put(&ept->refcount, __ept_release);
return NULL;
}
4、 virtio_endpoint_ops结构体介绍
可以看到这个结构体中包含了很多后续rpmsg_device 的ops,所以对于利用了virtio 来实现rpmsg ipc的具体ops都在这个结构体里面。
static const struct rpmsg_endpoint_ops virtio_endpoint_ops = {
.destroy_ept = virtio_rpmsg_destroy_ept,
.send = virtio_rpmsg_send,
.sendto = virtio_rpmsg_sendto,
.send_offchannel = virtio_rpmsg_send_offchannel,
.trysend = virtio_rpmsg_trysend,
.trysendto = virtio_rpmsg_trysendto,
.trysend_offchannel = virtio_rpmsg_trysend_offchannel,
};
5、rpmsg_ns_cb() 函数的介绍
在rpsmg_probe()函数中,为了支持remote_device,会进行virtio_device->priv(virtproc)->ns_ept = cretea ns_ept ,其中就会为注册rpmsg_ns_cb(),该函数主要进行如下事情:
初始化rpmsg_channel_info;
根据channel_info进行rpomsg_create_channel
static int rpmsg_ns_cb(struct rpmsg_device *rpdev, void *data, int len,
void *priv, u32 src)
{
struct rpmsg_ns_msg *msg = data;
struct rpmsg_device *newch;
struct rpmsg_channel_info chinfo;
struct virtproc_info *vrp = priv;
struct device *dev = &vrp->vdev->dev;
int ret;
#if defined(CONFIG_DYNAMIC_DEBUG)
dynamic_hex_dump("NS announcement: ", DUMP_PREFIX_NONE, 16, 1,
data, len, true);
#endif
if (len != sizeof(*msg)) {
dev_err(dev, "malformed ns msg (%d)\n", len);
return -EINVAL;
}
/*
* the name service ept does _not_ belong to a real rpmsg channel,
* and is handled by the rpmsg bus itself.
* for sanity reasons, make sure a valid rpdev has _not_ sneaked
* in somehow.
*/
if (rpdev) {
dev_err(dev, "anomaly: ns ept has an rpdev handle\n");
return -EINVAL;
}
/* don't trust the remote processor for null terminating the name */
msg->name[RPMSG_NAME_SIZE - 1] = '\0';
dev_info(dev, "%sing channel %s addr 0x%x\n",
msg->flags & RPMSG_NS_DESTROY ? "destroy" : "creat",
msg->name, msg->addr);
strncpy(chinfo.name, msg->name, sizeof(chinfo.name));
chinfo.src = RPMSG_ADDR_ANY;
chinfo.dst = msg->addr;
if (msg->flags & RPMSG_NS_DESTROY) {
ret = rpmsg_unregister_device(&vrp->vdev->dev, &chinfo);
if (ret)
dev_err(dev, "rpmsg_destroy_channel failed: %d\n", ret);
} else {
newch = rpmsg_create_channel(vrp, &chinfo);
if (!newch)
dev_err(dev, "rpmsg_create_channel failed\n");
}
return 0;
}
6、rpmsg_create_channel() 函数的介绍
函数原型如下:
调用rpmsg_device_match,根据chinfo来确认该channel没有被创建 ;
分配virtio_rpmsg_channel memory;
初始化rpmsg-device:virtio_rpmsg_channel->rpmsg_device src、dst、ops、announce、id.name;
根据初始化的rpmsg_device,进行rpmsg_register_device,往rpmsg_bus中register device;
返回rpmsg_device,该rpmsg_device addr == virtio_rpmsg_channel->rpmsg_device;
这样就可以理解为:
一个virtio_device对应一个virtio_rpmsg_channel;
一个virtio_rpmsg_channel对应一个rpmsg_device;
一个rpmsg_device对应一个rpmsg_driver;
/*
* create an rpmsg channel using its name and address info.
* this function will be used to create both static and dynamic
* channels.
*/
static struct rpmsg_device *rpmsg_create_channel(struct virtproc_info *vrp,
struct rpmsg_channel_info *chinfo)
{
struct virtio_rpmsg_channel *vch;
struct rpmsg_device *rpdev;
struct device *tmp, *dev = &vrp->vdev->dev;
int ret;
/* make sure a similar channel doesn't already exist */
/* 调用rpmsg_device_match,根据chinfo来确认该channel没有被创建 */
tmp = rpmsg_find_device(dev, chinfo);
if (tmp) {
/* decrement the matched device's refcount back */
put_device(tmp);
dev_err(dev, "channel %s:%x:%x already exist\n",
chinfo->name, chinfo->src, chinfo->dst);
return NULL;
}
/* 分配virtio_rpmsg_channel memory */
vch = kzalloc(sizeof(*vch), GFP_KERNEL);
if (!vch)
return NULL;
/* Link the channel to our vrp */
vch->vrp = vrp;
/* Assign public information to the rpmsg_device */
/* 初始化rpmsg-device
* virtio_rpmsg_channel->rpmsg_device src、dst、ops、announce、id.name
*/
rpdev = &vch->rpdev;
rpdev->src = chinfo->src;
rpdev->dst = chinfo->dst;
rpdev->ops = &virtio_rpmsg_ops;
/*
* rpmsg server channels has predefined local address (for now),
* and their existence needs to be announced remotely
*/
rpdev->announce = rpdev->src != RPMSG_ADDR_ANY;
strncpy(rpdev->id.name, chinfo->name, RPMSG_NAME_SIZE);
rpdev->dev.parent = &vrp->vdev->dev;
rpdev->dev.release = virtio_rpmsg_release_device;
/* 根据初始化的rpmsg_device,进行该device的register */
ret = rpmsg_register_device(rpdev);
if (ret)
return NULL;
return rpdev;
}
7、virtio_rpmsg_ops() 结构体的介绍
上面提到过,会将rpmsg_device->ops = &virtio_rpmsg_ops,这个结构体里面有如下三个操作函数,结合上面的理解,可以进一步规划为:
一个virtio_device对应一个virtio_rpmsg_channel;
一个virtio_rpmsg_channel对应一个rpmsg_device,一个virtio_rpmsg_channel对应多个rpmsg_endpoint;
一个rpmsg_device对应一个rpmsg_driver;
static const struct rpmsg_device_ops virtio_rpmsg_ops = {
.create_ept = virtio_rpmsg_create_ept,
.announce_create = virtio_rpmsg_announce_create,
.announce_destroy = virtio_rpmsg_announce_destroy,
};
其中virtio_rpmsg_create_ept()最终是调用__rpmsg_create_ept()。
三、Virtio的介绍
1、virtio.c 的介绍
1.1 virtio_bus结构体的介绍
源码如下:
该文件会建立一个name为“virtio”的bus
有几个比较关键的函数:
virtio_dev_match;
virtio_dev_groups;
virtio_dev_probe;
virtio_dev_remove;
static struct bus_type virtio_bus = {
.name = "virtio",
.match = virtio_dev_match,
.dev_groups = virtio_dev_groups,
.uevent = virtio_uevent,
.probe = virtio_dev_probe,
.remove = virtio_dev_remove,
};
其通过core_initcall和module_exit进行bus的初始化
static int virtio_init(void)
{
if (bus_register(&virtio_bus) != 0)
panic("virtio bus registration failed");
return 0;
}
static void __exit virtio_exit(void)
{
bus_unregister(&virtio_bus);
ida_destroy(&virtio_index_ida);
}
core_initcall(virtio_init);
module_exit(virtio_exit);
1.2 register_virtio_driver() 函数的介绍
当我们需要向virtio_bus register一个virtio_driver就需要调用该函数。
源码如下:可以看到其最终是调用driver_register
int register_virtio_driver(struct virtio_driver *driver)
{
/* Catch this early. */
BUG_ON(driver->feature_table_size && !driver->feature_table);
driver->driver.bus = &virtio_bus;
return driver_register(&driver->driver);
}
EXPORT_SYMBOL_GPL(register_virtio_driver);
1.3 register_virtio_device() 函数的介绍
当我们需要向virtio_bus register一个virtio_device就需要调用该函数。
源码如下:可以看到其最终是调用device_add(),主要做了如下事情:
bus name 赋值;
设置相关标志;
调用device_add()向bus总线添加device;
/**
* register_virtio_device - register virtio device
* @dev : virtio device to be registered
*
* On error, the caller must call put_device on &@dev->dev (and not kfree),
* as another code path may have obtained a reference to @dev.
*
* Returns: 0 on suceess, -error on failure
*/
int register_virtio_device(struct virtio_device *dev)
{
int err;
dev->dev.bus = &virtio_bus;
device_initialize(&dev->dev);
/* Assign a unique device index and hence name. */
err = ida_simple_get(&virtio_index_ida, 0, 0, GFP_KERNEL);
if (err < 0)
goto out;
dev->index = err;
dev_set_name(&dev->dev, "virtio%u", dev->index);
spin_lock_init(&dev->config_lock);
dev->config_enabled = false;
dev->config_change_pending = false;
/* We always start by resetting the device, in case a previous
* driver messed it up. This also tests that code path a little. */
dev->config->reset(dev);
/* Acknowledge that we've seen the device. */
virtio_add_status(dev, VIRTIO_CONFIG_S_ACKNOWLEDGE);
INIT_LIST_HEAD(&dev->vqs);
/*
* device_add() causes the bus infrastructure to look for a matching
* driver.
*/
err = device_add(&dev->dev);
if (err)
ida_simple_remove(&virtio_index_ida, dev->index);
out:
if (err)
virtio_add_status(dev, VIRTIO_CONFIG_S_FAILED);
return err;
}
EXPORT_SYMBOL_GPL(register_virtio_device);
1.4 virtio_dev_probe 函数的介绍
该函数主要做如下事情:
根据据传入的device,找该device说属于的virtio_device和virtio_driver;
设定相关的标志位;
**调用virtio_driver->probe()**这个函数后面会进行具体分析;
完成配置;
函数源码:
static int virtio_dev_probe(struct device *_d)
{
int err, i;
/* find virtio_device according to device */
struct virtio_device *dev = dev_to_virtio(_d);
/* find virtio_driver according to virtio_device */
struct virtio_driver *drv = drv_to_virtio(dev->dev.driver);
u64 device_features;
u64 driver_features;
u64 driver_features_legacy;
/* We have a driver! */
virtio_add_status(dev, VIRTIO_CONFIG_S_DRIVER);
/* Figure out what features the device supports. */
device_features = dev->config->get_features(dev);
/* Figure out what features the driver supports. */
driver_features = 0;
for (i = 0; i < drv->feature_table_size; i++) {
unsigned int f = drv->feature_table[i];
BUG_ON(f >= 64);
driver_features |= (1ULL << f);
}
/* Some drivers have a separate feature table for virtio v1.0 */
if (drv->feature_table_legacy) {
driver_features_legacy = 0;
for (i = 0; i < drv->feature_table_size_legacy; i++) {
unsigned int f = drv->feature_table_legacy[i];
BUG_ON(f >= 64);
driver_features_legacy |= (1ULL << f);
}
} else {
driver_features_legacy = driver_features;
}
if (device_features & (1ULL << VIRTIO_F_VERSION_1))
dev->features = driver_features & device_features;
else
dev->features = driver_features_legacy & device_features;
/* Transport features always preserved to pass to finalize_features. */
for (i = VIRTIO_TRANSPORT_F_START; i < VIRTIO_TRANSPORT_F_END; i++)
if (device_features & (1ULL << i))
__virtio_set_bit(dev, i);
if (drv->validate) {
err = drv->validate(dev);
if (err)
goto err;
}
err = virtio_finalize_features(dev);
if (err)
goto err;
/* callback virtio_driver->probe() */
err = drv->probe(dev);
if (err)
goto err;
/* If probe didn't do it, mark device DRIVER_OK ourselves. */
if (!(dev->config->get_status(dev) & VIRTIO_CONFIG_S_DRIVER_OK))
virtio_device_ready(dev);
if (drv->scan)
drv->scan(dev);
virtio_config_enable(dev);
return 0;
err:
virtio_add_status(dev, VIRTIO_CONFIG_S_FAILED);
return err;
}
1.5 virtio_dev_match 函数的介绍
该函数是virtio_bus进行device 和driver match
源码如下:
可以看到,其有两个匹配原则:
driver匹配任意device:virtio_driver->id_table[i] (virtio_device_id) ->vendor == VIRTIO_DEV_ANY_ID;
driver匹配指定一类device:virtio_driver->id_table[i] (virtio_device_id) ->vendor == virtio_device->id.vendor
static inline int virtio_id_match(const struct virtio_device *dev,
const struct virtio_device_id *id)
{
if (id->device != dev->id.device && id->device != VIRTIO_DEV_ANY_ID)
return 0;
return id->vendor == VIRTIO_DEV_ANY_ID || id->vendor == dev->id.vendor;
}
/* This looks through all the IDs a driver claims to support. If any of them
* match, we return 1 and the kernel will call virtio_dev_probe(). */
static int virtio_dev_match(struct device *_dv, struct device_driver *_dr)
{
unsigned int i;
struct virtio_device *dev = dev_to_virtio(_dv);
const struct virtio_device_id *ids;
ids = drv_to_virtio(_dr)->id_table;
for (i = 0; ids[i].device; i++)
if (virtio_id_match(dev, &ids[i]))
return 1;
return 0;
}
2、virtio_input.c的介绍
上面virtio.c是介绍virtio bus,该文件是介绍virtio_driver。
在整个目前所使用的kernel版本中,有多种virtio_driver(virtio_pci_driver、virtio-mmio、virtio_balloon_driver、virtio_input_driver),除了virtio_input_driver支持VIRTIO_DEV_ANY_ID,其他的virtio_driver都是支持指定的virtio_device。
2.1 virtio_input_driver结构体介绍
原型如下:
可以看到其支持power manager的相关freeze和restore操作,当然其最重要的函数就是virtinput_probe;
这个结构体是通过module_virtio_driver宏进而调用register_virtio_driver()
static unsigned int features[] = {
/* none */
};
static struct virtio_device_id id_table[] = {
{ VIRTIO_ID_INPUT, VIRTIO_DEV_ANY_ID },
{ 0 },
};
static struct virtio_driver virtio_input_driver = {
.driver.name = KBUILD_MODNAME,
.driver.owner = THIS_MODULE,
.feature_table = features,
.feature_table_size = ARRAY_SIZE(features),
.id_table = id_table,
.probe = virtinput_probe,
.remove = virtinput_remove,
#ifdef CONFIG_PM_SLEEP
.freeze = virtinput_freeze,
.restore = virtinput_restore,
#endif
};
module_virtio_driver(virtio_input_driver);
2.2 virtinput_probe() 函数的介绍
函数原型如下:可以看到所做的事情和virtio_ipc_driver是类似的:
初始化virtioquqe,设置callback;
分配buf;
设置相关属性:name、physaddr、serial name;
设置device为ready状态 ;
kick off;
static int virtinput_probe(struct virtio_device *vdev)
{
struct virtio_input *vi;
unsigned long flags;
size_t size;
int abs, err;
if (!virtio_has_feature(vdev, VIRTIO_F_VERSION_1))
return -ENODEV;
vi = kzalloc(sizeof(*vi), GFP_KERNEL);
if (!vi)
return -ENOMEM;
vdev->priv = vi;
vi->vdev = vdev;
spin_lock_init(&vi->lock);
/* 初始化virtqueue
* callback virtio_device->config->find_vqs
* init virtinput_recv_events and virtinput_recv_status callback
*/
err = virtinput_init_vqs(vi);
if (err)
goto err_init_vq;
/* alloc buf for device */
vi->idev = input_allocate_device();
if (!vi->idev) {
err = -ENOMEM;
goto err_input_alloc;
}
input_set_drvdata(vi->idev, vi);
/* 设置相关属性:name、physaddr、serial name*/
size = virtinput_cfg_select(vi, VIRTIO_INPUT_CFG_ID_NAME, 0);
virtio_cread_bytes(vi->vdev, offsetof(struct virtio_input_config,
u.string),
vi->name, min(size, sizeof(vi->name)));
size = virtinput_cfg_select(vi, VIRTIO_INPUT_CFG_ID_SERIAL, 0);
virtio_cread_bytes(vi->vdev, offsetof(struct virtio_input_config,
u.string),
vi->serial, min(size, sizeof(vi->serial)));
snprintf(vi->phys, sizeof(vi->phys),
"virtio%d/input0", vdev->index);
vi->idev->name = vi->name;
vi->idev->phys = vi->phys;
vi->idev->uniq = vi->serial;
size = virtinput_cfg_select(vi, VIRTIO_INPUT_CFG_ID_DEVIDS, 0);
if (size >= sizeof(struct virtio_input_devids)) {
virtio_cread(vi->vdev, struct virtio_input_config,
u.ids.bustype, &vi->idev->id.bustype);
virtio_cread(vi->vdev, struct virtio_input_config,
u.ids.vendor, &vi->idev->id.vendor);
virtio_cread(vi->vdev, struct virtio_input_config,
u.ids.product, &vi->idev->id.product);
virtio_cread(vi->vdev, struct virtio_input_config,
u.ids.version, &vi->idev->id.version);
} else {
vi->idev->id.bustype = BUS_VIRTUAL;
}
virtinput_cfg_bits(vi, VIRTIO_INPUT_CFG_PROP_BITS, 0,
vi->idev->propbit, INPUT_PROP_CNT);
size = virtinput_cfg_select(vi, VIRTIO_INPUT_CFG_EV_BITS, EV_REP);
if (size)
__set_bit(EV_REP, vi->idev->evbit);
vi->idev->dev.parent = &vdev->dev;
vi->idev->event = virtinput_status;
/* device -> kernel */
virtinput_cfg_bits(vi, VIRTIO_INPUT_CFG_EV_BITS, EV_KEY,
vi->idev->keybit, KEY_CNT);
virtinput_cfg_bits(vi, VIRTIO_INPUT_CFG_EV_BITS, EV_REL,
vi->idev->relbit, REL_CNT);
virtinput_cfg_bits(vi, VIRTIO_INPUT_CFG_EV_BITS, EV_ABS,
vi->idev->absbit, ABS_CNT);
virtinput_cfg_bits(vi, VIRTIO_INPUT_CFG_EV_BITS, EV_MSC,
vi->idev->mscbit, MSC_CNT);
virtinput_cfg_bits(vi, VIRTIO_INPUT_CFG_EV_BITS, EV_SW,
vi->idev->swbit, SW_CNT);
/* kernel -> device */
virtinput_cfg_bits(vi, VIRTIO_INPUT_CFG_EV_BITS, EV_LED,
vi->idev->ledbit, LED_CNT);
virtinput_cfg_bits(vi, VIRTIO_INPUT_CFG_EV_BITS, EV_SND,
vi->idev->sndbit, SND_CNT);
if (test_bit(EV_ABS, vi->idev->evbit)) {
for (abs = 0; abs < ABS_CNT; abs++) {
if (!test_bit(abs, vi->idev->absbit))
continue;
virtinput_cfg_abs(vi, abs);
}
}
/* 设置device为ready状态 */
virtio_device_ready(vdev);
vi->ready = true;
err = input_register_device(vi->idev);
if (err)
goto err_input_register;
/* 设定完成将会kickoff */
virtinput_fill_evt(vi);
return 0;
err_input_register:
spin_lock_irqsave(&vi->lock, flags);
vi->ready = false;
spin_unlock_irqrestore(&vi->lock, flags);
input_free_device(vi->idev);
err_input_alloc:
vdev->config->del_vqs(vdev);
err_init_vq:
kfree(vi);
return err;
}
四、virtio_device、virtio_driver、virtio_bus、rpmsg_device、rpmsg_drivver、rpmsg_bus如何如何联系且运作起来
1、联系的建立
当系统初始化时(前提ce是打开的kernel的rpmsg与virtio的相关config),其实已经存在了virtio_bus、virtio_ipc_driver、rpmsg_bus、rpmsg_bus,如下图:
此时需要register virtio_device,进而触发virtio_bus->probe(),该probe会进行如下事情:
根据据传入的device,找该device所属于的virtio_device和virtio_driver;
设定相关的标志位;
调用virtio_driver->probe();
完成配置;
virtio_bus->probe() 会进而调用virtio_ipc_driver->probe(),该probe会做如下事情:
根据vdev->config->find_vqs(),根据names作为匹配原则期望找到对应的rx与tx virtqueue;
根据找到的rx/tx,将其赋值到virtproc_info->virqueue[0/1] ;
统计rx/tx 所需要的buf size/buf num/total buf space,并为需要的buf申请DMA memory;
DMA memory对半分给若rx/tx;
对每一个rx buf进行vring的初始化;
将上述virtproc_info初始化赋值给该virtio_device;
为支持remote process,创建一个以RPMSG_NS_ADDR的virtproc_info->ns_ept,支持后续的name service announcement;
准备kick_off并告知remote process notify
完成上述两个步骤后,此时virtio_ipc_driver-----virtio_bus-----virtio_device已经建立成功,且该virtio_device中有一个ns_ept(virtio_device->priv(virtproc_inf)->ns_ept)。
此时我们可以进行客制化,调用该virtio_device->priv(virtproc_inf)->ns_ept->cb()即可rpmsg_ns_cb(),该函数会进行rpmsg_create_channel():
初始化rpmsg_channel_info;
根据channel_info进行rpomsg_create_channel
rpomsg_create_channel()进而会调用rpmsg_register_device():
调用rpmsg_device_match,根据chinfo来确认该channel没有被创建 ;
分配virtio_rpmsg_channel memory;
初始化rpmsg-device:virtio_rpmsg_channel->rpmsg_device src、dst、ops、announce、id.name;
根据初始化的rpmsg_device,进行rpmsg_register_device,往rpmsg_bus中register device;
返回rpmsg_device,该rpmsg_device addr == virtio_rpmsg_channel->rpmsg_device;
由于调用了rpmsg_register_device(),则进而会出发rpmsg_dev_probe(),将该rpmsg_device匹配上rpmsg_driver
此时就已经完成了virtio_device-----virtio_bus----virtio_ipc_driver <-----> rpmsg_device----rpmsg_bus-----rpmsg_driver,之间的联系,如下图:
2、运作
由于此时已经建立的联系,可以使用rpmsg_create_ept、rpmsg_send、rpmsg_trysend、rpmsg_poll等一系列的rpmsg operation,这个会进而会以callback的形式,最终调用virtio_rpmsg_bus.c中的virtio_rpmsg_ops。
举个例子,调用rpsmg_create_ept()
/----------------- rpmsg_core.c ---------------------/
struct rpmsg_endpoint *rpmsg_create_ept(struct rpmsg_device *rpdev,
rpmsg_rx_cb_t cb, void *priv,
struct rpmsg_channel_info chinfo)
{
if (WARN_ON(!rpdev))
return NULL;
return rpdev->ops->create_ept(rpdev, cb, priv, chinfo);
}
/* 该rpmsg device->ops,即是之前
* virtio_device进行virtio_ipc_driver->probe()时:
* virtio_device->priv(virtproc_info)->ns_ept->ops = & virtio_endpoint_ops;
* 当根据该ns_ept->cb()进行rpmsg_channel-->rpmsg_device的建立时:
* rpmsg->device->ops = & virtio_rpmsg_ops
* virtio_rpmsg_ops中就有virtio_rpmsg_create_ept
*/
————————————————
版权声明:本文为CSDN博主「Going1」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_42813232/article/details/125577142