首页 > 其他分享 >实验3:OpenFlow协议分析实践

实验3:OpenFlow协议分析实践

时间:2022-09-27 22:45:42浏览次数:52  
标签:OFPT struct OpenFlow 端口 实践 header ofp 实验 message

一、基础要求

032002205.py拓扑文件

#!/usr/bin/env python

from mininet.net import Mininet
from mininet.node import Controller, RemoteController, OVSController
from mininet.node import CPULimitedHost, Host, Node
from mininet.node import OVSKernelSwitch, UserSwitch
from mininet.node import IVSSwitch
from mininet.cli import CLI
from mininet.log import setLogLevel, info
from mininet.link import TCLink, Intf
from subprocess import call

def myNetwork():

    net = Mininet( topo=None,
                   build=False,
                   ipBase='192.168.0.0/24')

    info( '*** Adding controller\n' )
    c0=net.addController(name='c0',
                      controller=Controller,
                      protocol='tcp',
                      port=6633)

    info( '*** Add switches\n')
    s1 = net.addSwitch('s1', cls=OVSKernelSwitch)
    s2 = net.addSwitch('s2', cls=OVSKernelSwitch)

    info( '*** Add hosts\n')
    h1 = net.addHost('h1', cls=Host, ip='192.168.0.101', defaultRoute=None)
    h2 = net.addHost('h2', cls=Host, ip='192.168.0.102', defaultRoute=None)
    h3 = net.addHost('h3', cls=Host, ip='192.168.0.103', defaultRoute=None)
    h4 = net.addHost('h4', cls=Host, ip='192.168.0.104', defaultRoute=None)

    info( '*** Add links\n')
    net.addLink(s1, s2)
    net.addLink(h1, s1)
    net.addLink(h2, s1)
    net.addLink(h3, s2)
    net.addLink(s2, h4)

    info( '*** Starting network\n')
    net.build()
    info( '*** Starting controllers\n')
    for controller in net.controllers:
        controller.start()

    info( '*** Starting switches\n')
    net.get('s1').start([c0])
    net.get('s2').start([c0])

    info( '*** Post configure switches and hosts\n')

    CLI(net)
    net.stop()

if __name__ == '__main__':
    setLogLevel( 'info' )
    myNetwork()

wireshark抓包的结果

  • OFPT_HELLO
    控制器6633端口(我最高能支持OpenFlow 1.0)---> 交换机42480端口

    交换机42480端口(我最高能支持OpenFlow 1.5) ---> 控制器6633端口

    OFPT_HELLO后双方协定使用OpenFlow1.0协议。

  • OFPT_FEATURES_REQUEST
    控制器6633端口(我需要你的特征信息) ---> 交换机42480端口

  • OFPT_SET_CONFIG
    控制器6633端口(请按照我给你的 flag 和 max bytes of packet 进行配置) --->交换机42480端口

  • OFPT_PORT_STATUS
    当交换机端口发生变化时,告知控制器相应的端口状态

  • OFPT_FEATURES_REPLY
    交换机42480端口(这是我的特征信息,请查收)--- 控制器6633端口

  • OFPT_PACKET_IN
    分析抓取的数据包,可以发现是因为交换机发现此时自己并没有匹配的流表(Reason: No matching flow (table-miss flow entry) (0)),所以要问控制器如何处理

  • OFPT_FLOW_MOD
    分析抓取的flow_mod数据包,控制器通过6633端口向交换机端口42480、交换机端口42486下发流表项,指导数据的转发处理。

    ![](/i/l/?n=22&i=blog/2421269/202209/2421269-20220925000217938-1533383621.png)

  • OFPT_PACKET_OUT
    控制器6633端口(请按照我给你的action进行处理) ---> 交换机42480端口

  • 流程图

交换机与控制器建立通信时是使用TCP协议还是UDP协议?
交换机与控制器建立通信时使用TCP协议,可以在抓取的数据包中体现

二、进阶要求

  • 所有信号类型
enum ofp_type {
    /* Immutable messages. */
    OFPT_HELLO,               /* Symmetric message */
    OFPT_ERROR,               /* Symmetric message */
    OFPT_ECHO_REQUEST,        /* Symmetric message */
    OFPT_ECHO_REPLY,          /* Symmetric message */
    OFPT_VENDOR,              /* Symmetric message */

    /* Switch configuration messages. */
    OFPT_FEATURES_REQUEST,    /* Controller/switch message */
    OFPT_FEATURES_REPLY,      /* Controller/switch message */
    OFPT_GET_CONFIG_REQUEST,  /* Controller/switch message */
    OFPT_GET_CONFIG_REPLY,    /* Controller/switch message */
    OFPT_SET_CONFIG,          /* Controller/switch message */

    /* Asynchronous messages. */
    OFPT_PACKET_IN,           /* Async message */
    OFPT_FLOW_REMOVED,        /* Async message */
    OFPT_PORT_STATUS,         /* Async message */

    /* Controller command messages. */
    OFPT_PACKET_OUT,          /* Controller/switch message */
    OFPT_FLOW_MOD,            /* Controller/switch message */
    OFPT_PORT_MOD,            /* Controller/switch message */

    /* Statistics messages. */
    OFPT_STATS_REQUEST,       /* Controller/switch message */
    OFPT_STATS_REPLY,         /* Controller/switch message */

    /* Barrier messages. */
    OFPT_BARRIER_REQUEST,     /* Controller/switch message */
    OFPT_BARRIER_REPLY,       /* Controller/switch message */

    /* Queue Configuration messages. */
    OFPT_QUEUE_GET_CONFIG_REQUEST,  /* Controller/switch message */
    OFPT_QUEUE_GET_CONFIG_REPLY     /* Controller/switch message */

};

-- OFPT_HELLO

/* Header on all OpenFlow packets. */
/* Header on all OpenFlow packets. */
struct ofp_header {
    uint8_t version;    /* OFP_VERSION. */
    uint8_t type;       /* One of the OFPT_ constants. */
    uint16_t length;    /* Length including this ofp_header. */
    uint32_t xid;       /* Transaction id associated with this packet.
                           Replies use the same id as was in the request
                           to facilitate pairing. */
};
OFP_ASSERT(sizeof(struct ofp_header) == 8);

/* OFPT_HELLO.  This message has an empty body, but implementations must
 * ignore any data included in the body, to allow for future extensions. */
struct ofp_hello {
    struct ofp_header header;
};


  • OFPT_FEATURES_REQUEST
    控制器6633端口(我需要你的特征信息) ---> 交换机42480端口
struct ofp_header 
{
    uint8_t version;    /* OFP_VERSION. */
    uint8_t type;       /* One of the OFPT_ constants. */
    uint16_t length;    /* Length including this ofp_header. */
    uint32_t xid;       /* Transaction id associated with this packet.
                           Replies use the same id as was in the request
                           to facilitate pairing. */
};
struct ofp_hello
{
    struct ofp_header header;
};

  • OFPT_SET_CONFIG
    控制器6633端口(请按照我给你的 flag 和 max bytes of packet 进行配置) --->交换机42480端口
/* Switch configuration. */
struct ofp_switch_config {
    struct ofp_header header;
    uint16_t flags;             /* OFPC_* flags. */
    uint16_t miss_send_len;     /* Max bytes of new flow that datapath should
                                   send to the controller. */
};

  • OFPT_PORT_STATUS
    当交换机端口发生变化时,告知控制器相应的端口状态
/* A physical port has changed in the datapath */
struct ofp_port_status {
    struct ofp_header header;
    uint8_t reason;          /* One of OFPPR_*. */
    uint8_t pad[7];          /* Align to 64-bits. */
    struct ofp_phy_port desc;
};

  • OFPT_FEATURES_REPLY
    交换机42480端口(这是我的特征信息,请查收)--- 控制器6633端口
* Description of a physical port */
struct ofp_phy_port {
    uint16_t port_no;
    uint8_t hw_addr[OFP_ETH_ALEN];
    char name[OFP_MAX_PORT_NAME_LEN]; /* Null-terminated */

    uint32_t config;        /* Bitmap of OFPPC_* flags. */
    uint32_t state;         /* Bitmap of OFPPS_* flags. */

    /* Bitmaps of OFPPF_* that describe features.  All bits zeroed if
     * unsupported or unavailable. */
    uint32_t curr;          /* Current features. */
    uint32_t advertised;    /* Features being advertised by the port. */
    uint32_t supported;     /* Features supported by the port. */
    uint32_t peer;          /* Features advertised by peer. */
};
OFP_ASSERT(sizeof(struct ofp_phy_port) == 48);

/* Switch features. */
struct ofp_switch_features {
    struct ofp_header header;
    uint64_t datapath_id;   /* Datapath unique ID.  The lower 48-bits are for
                               a MAC address, while the upper 16-bits are
                               implementer-defined. */

    uint32_t n_buffers;     /* Max packets buffered at once. */

    uint8_t n_tables;       /* Number of tables supported by datapath. */
    uint8_t pad[3];         /* Align to 64-bits. */

    /* Features. */
    uint32_t capabilities;  /* Bitmap of support "ofp_capabilities". */
    uint32_t actions;       /* Bitmap of supported "ofp_action_type"s. */

    /* Port info.*/
    struct ofp_phy_port ports[0];  /* Port definitions.  The number of ports
                                      is inferred from the length field in
                                      the header. */
};

  • OFPT_PACKET_IN
    分析抓取的数据包,可以发现是因为交换机发现此时自己并没有匹配的流表(Reason: No matching flow (table-miss flow entry) (0)),所以要问控制器如何处理
/* Why is this packet being sent to the controller? */
enum ofp_packet_in_reason {
    OFPR_NO_MATCH,          /* No matching flow. */
    OFPR_ACTION             /* Action explicitly output to controller. */
};

/* Packet received on port (datapath -> controller). */
struct ofp_packet_in {
    struct ofp_header header;
    uint32_t buffer_id;     /* ID assigned by datapath. */
    uint16_t total_len;     /* Full length of frame. */
    uint16_t in_port;       /* Port on which frame was received. */
    uint8_t reason;         /* Reason packet is being sent (one of OFPR_*) */
    uint8_t pad;
    uint8_t data[0];        /* Ethernet frame, halfway through 32-bit word,
                               so the IP header is 32-bit aligned.  The
                               amount of data is inferred from the length
                               field in the header.  Because of padding,
                               offsetof(struct ofp_packet_in, data) ==
                               sizeof(struct ofp_packet_in) - 2. */
};

  • OFPT_FLOW_MOD
    分析抓取的flow_mod数据包,控制器通过6633端口向交换机端口42480、交换机端口42486下发流表项,指导数据的转发处理。
/* Fields to match against flows */
struct ofp_match {
    uint32_t wildcards;        /* Wildcard fields. */
    uint16_t in_port;          /* Input switch port. */
    uint8_t dl_src[OFP_ETH_ALEN]; /* Ethernet source address. */
    uint8_t dl_dst[OFP_ETH_ALEN]; /* Ethernet destination address. */
    uint16_t dl_vlan;          /* Input VLAN id. */
    uint8_t dl_vlan_pcp;       /* Input VLAN priority. */
    uint8_t pad1[1];           /* Align to 64-bits */
    uint16_t dl_type;          /* Ethernet frame type. */
    uint8_t nw_tos;            /* IP ToS (actually DSCP field, 6 bits). */
    uint8_t nw_proto;          /* IP protocol or lower 8 bits of
                                * ARP opcode. */
    uint8_t pad2[2];           /* Align to 64-bits */
    uint32_t nw_src;           /* IP source address. */
    uint32_t nw_dst;           /* IP destination address. */
    uint16_t tp_src;           /* TCP/UDP source port. */
    uint16_t tp_dst;           /* TCP/UDP destination port. */
};
/* Flow setup and teardown (controller -> datapath). */
struct ofp_flow_mod {
    struct ofp_header header;
    struct ofp_match match;      /* Fields to match */
    uint64_t cookie;             /* Opaque controller-issued identifier. */

    /* Flow actions. */
    uint16_t command;             /* One of OFPFC_*. */
    uint16_t idle_timeout;        /* Idle time before discarding (seconds). */
    uint16_t hard_timeout;        /* Max time before discarding (seconds). */
    uint16_t priority;            /* Priority level of flow entry. */
    uint32_t buffer_id;           /* Buffered packet to apply to (or -1).
                                     Not meaningful for OFPFC_DELETE*. */
    uint16_t out_port;            /* For OFPFC_DELETE* commands, require
                                     matching entries to include this as an
                                     output port.  A value of OFPP_NONE
                                     indicates no restriction. */
    uint16_t flags;               /* One of OFPFF_*. */
    struct ofp_action_header actions[0]; /* The action length is inferred
                                            from the length field in the
                                            header. */
};


  • OFPT_PACKET_OUT
    控制器6633端口(请按照我给你的action进行处理) ---> 交换机42480端口
/* Action header that is common to all actions.  The length includes the
 * header and any padding used to make the action 64-bit aligned.
 * NB: The length of an action *must* always be a multiple of eight. */
struct ofp_action_header {
    uint16_t type;                  /* One of OFPAT_*. */
    uint16_t len;                   /* Length of action, including this
                                       header.  This is the length of action,
                                       including any padding to make it
                                       64-bit aligned. */
    uint8_t pad[4];
};
OFP_ASSERT(sizeof(struct ofp_action_header) == 8);

/* Send packet (controller -> datapath). */
struct ofp_packet_out {
    struct ofp_header header;
    uint32_t buffer_id;           /* ID assigned by datapath (-1 if none). */
    uint16_t in_port;             /* Packet's input port (OFPP_NONE if none). */
    uint16_t actions_len;         /* Size of action array in bytes. */
    struct ofp_action_header actions[0]; /* Actions. */
    /* uint8_t data[0]; */        /* Packet data.  The length is inferred
                                     from the length field in the header.
                                     (Only meaningful if buffer_id == -1.) */
};

三、个人总结

标签:OFPT,struct,OpenFlow,端口,实践,header,ofp,实验,message
From: https://www.cnblogs.com/lcyq/p/16727083.html

相关文章

  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制......
  • 实验2_Open vSwitch虚拟交换机实践
    1.基础要求a)/home/用户名/学号/lab2/目录下执行ovs-vsctlshow命令截图p0和p1连通性测试的执行结果截图b)/home/用户名/学号/lab2/目录下开启MininetCLI并执行pin......
  • 实验2:Open vSwitch虚拟交换机实践
    一、实验目的能够对OpenvSwitch进行基本操作;能够通过命令行终端使用OVS命令操作OpenvSwitch交换机,管理流表;能够通过Mininet的Python代码运行OVS命令,控制网络拓扑中的O......
  • 实验2:Open vSwitch虚拟交换机实践
    (一)基本要求1.ovs-vsctl基础操作实践:创建OVS交换机。2.在创建的交换机上增加端口p0和p13.创建虚拟网络空间ns04.创建虚拟网络空间ns15.最后测试p0和p1的连通性......
  • 实验3:OpenFlow协议分析实践
    一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制。二、实验环境Ubuntu20......
  • 实验3:OpenFlow协议分析实践
    基本要求Wireshark抓包结果1.Hello控制器6633端口——>交换机54256端口OpenFlow1.0协议交换机54256端口——>控制器6633端口OpenFlow1.5协议2、Features......
  • 实验2:Open vSwitch虚拟交换机实践
    一、基础要求a)/home/用户名/学号/lab2/目录下执行ovs-vsctlshow命令、以及p0和p1连通性测试的执行结果截图b)/home/用户名/学号/lab2/目录下开启MininetCLI并执行......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践基础部分:1./home/用户名/学号/lab3/目录下的拓扑文件frommininet.netimportMininetfrommininet.nodeimportController,RemoteContr......
  • 算法设计与分析课-实验-贪心
    算法设计与分析课贪心算法第一题最小延迟调度:贪心算法的基本思想:贪心算法的基本思想为从整体中找到每个小局部的最优解,并将所有局部最优解合并成整体的最优解。能够......
  • 呕血倾力总结:「大数据技术体系」学习实践导览
    导言截止目前为止,在自己的技术生涯中,要说哪一种技术体系的学习路径最为曲折,那非大数据技术体系莫属了。相比特定编程语言的学习,相比类如云原生技术这类已然涵盖面很广的技术......