首页 > 其他分享 >实验3:OpenFlow协议分析实践

实验3:OpenFlow协议分析实践

时间:2022-09-27 22:37:37浏览次数:61  
标签:struct OpenFlow 实践 uint32 header ofp uint16 实验 port

实验3:OpenFlow协议分析实践

一、实验目的

能够运用 wireshark 对 OpenFlow 协议数据交互过程进行抓包;
能够借助包解析工具,分析与解释 OpenFlow协议的数据包交互过程与机制。

二、实验环境

Ubuntu 20.04 Desktop amd64

三、实验要求

(一)基本要求

搭建下图所示拓扑,完成相关 IP 配置,并实现主机与主机之间的 IP 通信。用抓包软件获取控制器与交换机之间的通信数据。

查看抓包结果。

hello
控制器6633端口->交换机42206端口

交换机42206端口->控制器6633端口

Feature Request
控制器6633端口(我需要你的特征信息) ---> 交换机42206端口

Set Config
控制器6633端口(请按照我给你的flag和max bytes of packet进行配置) ---> 交换机42206端口

Port_Status
当交换机端口发生变化时,告知控制器相应的端口状态。

Features Reply
交换机端口42206(这是我的特征信息,请查收) ---> 控制器6633端口

Packet_In

Flow_Mod

Packet_Out

分析OpenFlow协议中交换机与控制器的消息交互过程,画出相关交互图或流程图。

回答问题:交换机与控制器建立通信时是使用TCP协议还是UDP协议?

TCP

(二)进阶要求

将抓包基础要求第2步的抓包结果对照OpenFlow源码,了解OpenFlow主要消息类型对应的数据结构定义。
hello

struct ofp_header {    
  uint8_t version;    /* OFP_VERSION. */    
  uint8_t type;       /* One of the OFPT_ constants. */    
  uint16_t length;    /* Length including this ofp_header. */    
  uint32_t xid;       
/* Transaction id associated with this packet.                             
Replies use the same id as was in the request to facilitate pairing. 
*/}; 
struct ofp_hello {    
  struct ofp_header header;
};

Features Request

Set Config

struct ofp_switch_config
{
    struct ofp_header header;
    uint16_t flags;             /* OFPC_* flags. */
    uint16_t miss_send_len;     /* Max bytes of new flow that datapath should
                                   send to the controller. */
};

Port_Status

/* A physical port has changed in the datapath */
  struct ofp_port_status {    
  struct ofp_header header;    
  uint8_t reason;          /* One of OFPPR_*. */    
  uint8_t pad[7];          /* Align to 64-bits. */    
  struct ofp_phy_port desc;
};

Features Reply

struct ofp_switch_features {   
  struct ofp_header header;    
  uint64_t datapath_id;   
/* Datapath unique ID.  The lower 48-bits are for a MAC address, while the upper 16-bits are implementer-defined. */     
  uint32_t n_buffers;     /* Max packets buffered at once. */     
  uint8_t n_tables;       /* Number of tables supported by datapath. */    
  uint8_t pad[3];         /* Align to 64-bits. */     /* Features. */    
  uint32_t capabilities;  /* Bitmap of support "ofp_capabilities". */    
  uint32_t actions;       /* Bitmap of supported "ofp_action_type"s. */     /* Port info.*/    

struct ofp_phy_port ports[0];  /* Port definitions.  The number of ports                                      is inferred from the length field in the header. */};
/* Description of a physical port */
struct ofp_phy_port { 
  uint16_t port_no;    
  uint8_t hw_addr[OFP_ETH_ALEN];    
  char name[OFP_MAX_PORT_NAME_LEN]; /* Null-terminated */     
  uint32_t config;        /* Bitmap of OFPPC_* flags. */    
  uint32_t state;         /* Bitmap of OFPPS_* flags. */     
/* Bitmaps of OFPPF_* that describe features.  All bits zeroed if  * unsupported or unavailable. */    
  uint32_t curr;          /* Current features. */    
  uint32_t advertised;    /* Features being advertised by the port. */    
  uint32_t supported;     /* Features supported by the port. */    
  uint32_t peer;          /* Features advertised by peer. */
 };

Packet_In

/* Packet received on port (datapath -> controller). */
struct ofp_packet_in 
{
    struct ofp_header header;
    uint32_t buffer_id;     /* ID assigned by datapath. */
    uint16_t total_len;     /* Full length of frame. */
    uint16_t in_port;       /* Port on which frame was received. */
    uint8_t reason;         /* Reason packet is being sent (one of OFPR_*) */
    uint8_t pad;
    uint8_t data[0];        /* Ethernet frame, halfway through 32-bit word,
                               so the IP header is 32-bit aligned.  The
                               amount of data is inferred from the length
                               field in the header.  Because of padding,
                               offsetof(struct ofp_packet_in, data) ==
                               sizeof(struct ofp_packet_in) - 2. */
};

Flow_Mod

/* Flow setup and teardown (controller -> datapath). */
struct ofp_flow_mod {
    struct ofp_header header;
    struct ofp_match match;      /* Fields to match */
    uint64_t cookie;             /* Opaque controller-issued identifier. */

    /* Flow actions. */
    uint16_t command;             /* One of OFPFC_*. */
    uint16_t idle_timeout;        /* Idle time before discarding (seconds). */
    uint16_t hard_timeout;        /* Max time before discarding (seconds). */
    uint16_t priority;            /* Priority level of flow entry. */
    uint32_t buffer_id;           /* Buffered packet to apply to (or -1).
                                     Not meaningful for OFPFC_DELETE*. */
    uint16_t out_port;            /* For OFPFC_DELETE* commands, require
                                     matching entries to include this as an
                                     output port.  A value of OFPP_NONE
                                     indicates no restriction. */
    uint16_t flags;               /* One of OFPFF_*. */
    struct ofp_action_header actions[0]; /* The action length is inferred
                                            from the length field in the
                                            header. */
};

Packet_Out

/* Send packet (controller -> datapath). */
struct ofp_packet_out 
{
    struct ofp_header header;
    uint32_t buffer_id;           /* ID assigned by datapath (-1 if none). */
    uint16_t in_port;             /* Packet's input port (OFPP_NONE if none). */
    uint16_t actions_len;         /* Size of action array in bytes. */
    struct ofp_action_header actions[0]; /* Actions. */
    /* uint8_t data[0]; */        /* Packet data.  The length is inferred
                                     from the length field in the header.
                                     (Only meaningful if buffer_id == -1.) */
};

四、个人总结

  • 这次报告总体难度不大,重点在于wireshark抓包,了解openflow通信过程和认识openflow数据包类型。
  • 其中,我在第一次wireshark抓包的时候忘记pingall获取流量信息,导致找不到port_status的数据包。
  • 在运行python文件之前应先启动wireshark,不然很容易抓不到,或抓不全。
  • 耐心耐心耐心!!特别是面对这样一个处处是细节的作业!!!

标签:struct,OpenFlow,实践,uint32,header,ofp,uint16,实验,port
From: https://www.cnblogs.com/zhaoxizxzx/p/16736221.html

相关文章

  • 实验2_Open vSwitch虚拟交换机实践
    1.基础要求a)/home/用户名/学号/lab2/目录下执行ovs-vsctlshow命令截图p0和p1连通性测试的执行结果截图b)/home/用户名/学号/lab2/目录下开启MininetCLI并执行pin......
  • 实验2:Open vSwitch虚拟交换机实践
    一、实验目的能够对OpenvSwitch进行基本操作;能够通过命令行终端使用OVS命令操作OpenvSwitch交换机,管理流表;能够通过Mininet的Python代码运行OVS命令,控制网络拓扑中的O......
  • 实验2:Open vSwitch虚拟交换机实践
    (一)基本要求1.ovs-vsctl基础操作实践:创建OVS交换机。2.在创建的交换机上增加端口p0和p13.创建虚拟网络空间ns04.创建虚拟网络空间ns15.最后测试p0和p1的连通性......
  • 实验3:OpenFlow协议分析实践
    一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制。二、实验环境Ubuntu20......
  • 实验3:OpenFlow协议分析实践
    基本要求Wireshark抓包结果1.Hello控制器6633端口——>交换机54256端口OpenFlow1.0协议交换机54256端口——>控制器6633端口OpenFlow1.5协议2、Features......
  • 实验2:Open vSwitch虚拟交换机实践
    一、基础要求a)/home/用户名/学号/lab2/目录下执行ovs-vsctlshow命令、以及p0和p1连通性测试的执行结果截图b)/home/用户名/学号/lab2/目录下开启MininetCLI并执行......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践基础部分:1./home/用户名/学号/lab3/目录下的拓扑文件frommininet.netimportMininetfrommininet.nodeimportController,RemoteContr......
  • 算法设计与分析课-实验-贪心
    算法设计与分析课贪心算法第一题最小延迟调度:贪心算法的基本思想:贪心算法的基本思想为从整体中找到每个小局部的最优解,并将所有局部最优解合并成整体的最优解。能够......
  • 呕血倾力总结:「大数据技术体系」学习实践导览
    导言截止目前为止,在自己的技术生涯中,要说哪一种技术体系的学习路径最为曲折,那非大数据技术体系莫属了。相比特定编程语言的学习,相比类如云原生技术这类已然涵盖面很广的技术......
  • 实验3:OpenFlow协议分析实践
    一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制。二、实验环境Ubuntu20......