首页 > 其他分享 >实验3:OpenFlow协议分析实践

实验3:OpenFlow协议分析实践

时间:2022-09-27 22:22:28浏览次数:39  
标签:struct OpenFlow 端口 实践 header ofp uint16 实验 port

一、实验目的

  1. 能够运用 wireshark 对 OpenFlow 协议数据交互过程进行抓包;
  2. 能够借助包解析工具,分析与解释 OpenFlow协议的数据包交互过程与机制。

二、实验环境

Ubuntu 20.04 Desktop amd64

三、实验要求

(一)基本要求

查看抓包结果
  • hello
    控制器6633端口(我最高支持OpenFlow1.0)--->交换机52148端口

image

交换机52148端口(我最高支持OpenFlow1.3)--->控制器6633端口

image

  • Features Request/Set Config

控制器6633端口(我需要你的特征信息) ---> 交换机52148端口

image

控制器6633端口(请按照我给你的flag和max bytes of packet进行配置) ---> 交换机52148端口

image

  • Port_Status

当交换机端口发生变化时,告知控制器相应的端口状态。

image

  • Features Reply

交换机51422端口(这是我的特征信息,请查收) ---> 控制器6633端口

image

  • packet_in

    • 有两种情况:
      1. 交换机查找流表,发现没有匹配条目时
      2. 有匹配条目但是对应的action是OUTPUT-CONTROLLER时

交换机54122端口(有数据包进来,请指示)--- 控制器6633端口

image

  • Packet_out

控制器6633端口(请按照我给你的action进行处理) ---> 交换机54122端口

image

  • flow_mod

分析抓取的flow_mod数据包,控制器通过6633端口向交换机51422端口、交换机51438端口下发流表项,指导数据的转发处理

image
image

  • 分析OpenFlow协议中交换机与控制器的消息交互过程,画出相关交互图或流程图

image

  • 回答问题:交换机与控制器建立通信时是使用TCP协议还是UDP协议?
    tcp协议

image

(二)进阶要求

  1. HELLO

image

/* Header on all OpenFlow packets. */
struct ofp_header {
    uint8_t version;    /* OFP_VERSION. */
    uint8_t type;       /* One of the OFPT_ constants. */
    uint16_t length;    /* Length including this ofp_header. */
    uint32_t xid;       /* Transaction id associated with this packet.
                           Replies use the same id as was in the request
                           to facilitate pairing. */
};

//HELLO报文中有四个参数,对应版本号、消息类型、长度及ID,ID是唯一的,回复使用相同的ID
struct ofp_hello {
    struct ofp_header header;
};
//HELLO报文中的body是空的,只有一个头部。
  1. Features Request

image

/* Header on all OpenFlow packets. */
struct ofp_header {
    uint8_t version;    /* OFP_VERSION. */
    uint8_t type;       /* One of the OFPT_ constants. */
    uint16_t length;    /* Length including this ofp_header. */
    uint32_t xid;       /* Transaction id associated with this packet.
                           Replies use the same id as was in the request
                           to facilitate pairing. */
};

 //feature_request的结构和hello一样

  1. Set Config

image

/* Switch configuration. */
struct ofp_switch_config {
    struct ofp_header header;
    uint16_t flags;             /* OFPC_* flags. */
    uint16_t miss_send_len;     /* Max bytes of new flow that datapath should
                                   send to the controller. */
};
//除了头部,还有端口类型,以及packet可携带的最大消息长度
  1. Port_Status

image

/* A physical port has changed in the datapath */
struct ofp_port_status {
    struct ofp_header header;
    uint8_t reason;          /* One of OFPPR_*. */
    uint8_t pad[7];          /* Align to 64-bits. */
    struct ofp_phy_port desc;
};
//添加、删除或修改物理端口时,需要发送Port-Status 消息来通知OpenFlow 控制器
  1. Features Reply

image

struct ofp_switch_features {
    struct ofp_header header;
    uint64_t datapath_id;   /* Datapath unique ID.  The lower 48-bits are for
                               a MAC address, while the upper 16-bits are
                               implementer-defined. */

    uint32_t n_buffers;     /* Max packets buffered at once. */

    uint8_t n_tables;       /* Number of tables supported by datapath. */
    uint8_t pad[3];         /* Align to 64-bits. */

    /* Features. */
    uint32_t capabilities;  /* Bitmap of support "ofp_capabilities". */
    uint32_t actions;       /* Bitmap of supported "ofp_action_type"s. */

    /* Port info.*/
    struct ofp_phy_port ports[0];  /* Port definitions.  The number of ports
                                      is inferred from the length field in
                                      the header. */
};
/* Description of a physical port */
struct ofp_phy_port {
    uint16_t port_no;
    uint8_t hw_addr[OFP_ETH_ALEN];
    char name[OFP_MAX_PORT_NAME_LEN]; /* Null-terminated */

    uint32_t config;        /* Bitmap of OFPPC_* flags. */
    uint32_t state;         /* Bitmap of OFPPS_* flags. */

    /* Bitmaps of OFPPF_* that describe features.  All bits zeroed if
     * unsupported or unavailable. */
    uint32_t curr;          /* Current features. */
    uint32_t advertised;    /* Features being advertised by the port. */
    uint32_t supported;     /* Features supported by the port. */
    uint32_t peer;          /* Features advertised by peer. */
};
  1. packet_in

image

struct ofp_packet_in {
    struct ofp_header header;
    uint32_t buffer_id;     /* ID assigned by datapath. */
    uint16_t total_len;     /* Full length of frame. */
    uint16_t in_port;       /* Port on which frame was received. */
    uint8_t reason;         /* Reason packet is being sent (one of OFPR_*) */
    uint8_t pad;
    uint8_t data[0];        /* Ethernet frame, halfway through 32-bit word,
                               so the IP header is 32-bit aligned.  The
                               amount of data is inferred from the length
                               field in the header.  Because of padding,
                               offsetof(struct ofp_packet_in, data) ==
                               sizeof(struct ofp_packet_in) - 2. */
};

  1. Packet_out

image

/* Send packet (controller -> datapath). */
struct ofp_packet_out {
    struct ofp_header header;
    uint32_t buffer_id;           /* ID assigned by datapath (-1 if none). */
    uint16_t in_port;             /* Packet's input port (OFPP_NONE if none). */
    uint16_t actions_len;         /* Size of action array in bytes. */
    struct ofp_action_header actions[0]; /* Actions. */
    /* uint8_t data[0]; */        /* Packet data.  The length is inferred
                                     from the length field in the header.
                                     (Only meaningful if buffer_id == -1.) */
};

//包括动作列表、缓冲区ID等

  1. flow_mod

image
image

/* Flow setup and teardown (controller -> datapath). */
struct ofp_flow_mod {
    struct ofp_header header;
    struct ofp_match match;      /* Fields to match */
    uint64_t cookie;             /* Opaque controller-issued identifier. */

    /* Flow actions. */
    uint16_t command;             /* One of OFPFC_*. */
    uint16_t idle_timeout;        /* Idle time before discarding (seconds). */
    uint16_t hard_timeout;        /* Max time before discarding (seconds). */
    uint16_t priority;            /* Priority level of flow entry. */
    uint32_t buffer_id;           /* Buffered packet to apply to (or -1).
                                     Not meaningful for OFPFC_DELETE*. */
    uint16_t out_port;            /* For OFPFC_DELETE* commands, require
                                     matching entries to include this as an
                                     output port.  A value of OFPP_NONE
                                     indicates no restriction. */
    uint16_t flags;               /* One of OFPFF_*. */
    struct ofp_action_header actions[0]; /* The action length is inferred
                                            from the length field in the
                                            header. */
};

//包括流表项标志符cookie,command代表五种操作,对应值分别为0-4,优先级等

(四)个人总结

  1. 这次实验难度较小,属于验证性观察实验,按照实验指导作,基本没有什么大的问题。遇到的一些困难就是,在进行抓包时,第一次有看到openflow_v4,但是再次运行导出的Python文件时却发现没有openflow_v4,但有openflow_v6,显示的是1.5协议。就是发现第一次构造topo时可以抓取到1.3。后来发现两者都可以。
  2. 通过这次实验学习到了controller通过openflow协议进行与交换机的通信过程,以及端口配置。controller和switches通信是通过TCP协议,建立起可靠传输,里面包裹openflow协议。通过和源码对照,能够直观的认识到不同类型的数据报的组成,以及各字段所代表的意义和作用。

标签:struct,OpenFlow,端口,实践,header,ofp,uint16,实验,port
From: https://www.cnblogs.com/gereey/p/16736227.html

相关文章

  • 实验3:OpenFlow协议分析实践
    基本要求Wireshark抓包结果1.Hello控制器6633端口——>交换机54256端口OpenFlow1.0协议交换机54256端口——>控制器6633端口OpenFlow1.5协议2、Features......
  • 实验2:Open vSwitch虚拟交换机实践
    一、基础要求a)/home/用户名/学号/lab2/目录下执行ovs-vsctlshow命令、以及p0和p1连通性测试的执行结果截图b)/home/用户名/学号/lab2/目录下开启MininetCLI并执行......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践基础部分:1./home/用户名/学号/lab3/目录下的拓扑文件frommininet.netimportMininetfrommininet.nodeimportController,RemoteContr......
  • 算法设计与分析课-实验-贪心
    算法设计与分析课贪心算法第一题最小延迟调度:贪心算法的基本思想:贪心算法的基本思想为从整体中找到每个小局部的最优解,并将所有局部最优解合并成整体的最优解。能够......
  • 呕血倾力总结:「大数据技术体系」学习实践导览
    导言截止目前为止,在自己的技术生涯中,要说哪一种技术体系的学习路径最为曲折,那非大数据技术体系莫属了。相比特定编程语言的学习,相比类如云原生技术这类已然涵盖面很广的技术......
  • 实验3:OpenFlow协议分析实践
    一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制。二、实验环境Ubuntu20......
  • 实验3:OpenFlow协议分析实践
    实验内容(一)基本要求1.搭建下图所示拓扑,完成相关IP配置,并实现主机与主机之间的IP通信。用抓包软件获取控制器与交换机之间的通信数据。2.查看抓包结果,分析OpenFlow......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制......
  • 实验3:OpenFlow协议分析实践
    一、基本要求1.搭建拓扑-拓扑代码#!/usr/bin/envpythonfrommininet.netimportMininetfrommininet.nodeimportController,RemoteController,OVSControllerf......
  • 实验3:OpenFlow协议分析实践
    一.实验内容(包含拓展)1、拓扑2、抓包(1)hello控制器6633端口-->交换机47394端口,协议为openflow1.0交换机47394端口-->控制器6633端口,协议为openflow1.5点击查......