首页 > 其他分享 >实验3:OpenFlow协议分析实践

实验3:OpenFlow协议分析实践

时间:2022-09-27 21:58:34浏览次数:47  
标签:struct uint16 OpenFlow 实践 header ofp 交换机 实验 port

实验内容

(一)基本要求

1.搭建下图所示拓扑,完成相关 IP 配置,并实现主机与主机之间的 IP 通信。用抓包软件获取控制器与交换机之间的通信数据。

2.查看抓包结果,分析OpenFlow协议中交换机与控制器的消息交互过程,画出相关交互图或流程图。

  • HELLO
    控制器6633端口(我最高能支持OpenFlow 1.0) 到交换机60984端口

    交换机60984端口(我最高能支持OpenFlow 1.5)到控制器6633端口

    于是双方建立连接,并使用OpenFlow 1.0

  • OFPT_FEATURES_REQUEST
    控制器6633端口(我需要你的特征信息)到交换机60984端口

  • OFPT_SET_CONIG
    控制器6633端口(请按照我给你的flag和max bytes of packet进行配置)到交换机60984端口

  • OFPT_PORT_STATUS
    控制器6633端口到交换机60984端口,请求特征信息

  • OFPT_FEATURES_REPLY:
    交换机60984端口到控制器6633端口,回复特征信息

  • OFPT_PACKET_IN:
    交换机60984端口(有数据包进来,请指示)->控制器6633端口

  • OFPT_FLOW_MOD:
    分析抓取的flow_mod数据包,控制器通过6633端口向交换机60984端口下发流表项,指导数据的转发处理

  • OFPT_PACKET_OUT:
    控制器6633端口向交换机60984端口发送数据,并告知交换机输出到1端口

    流程图:

3.回答问题:交换机与控制器建立通信时是使用TCP协议还是UDP协议?
TCP协议

(二)进阶要求

  • 通用字段
/* Header on all OpenFlow packets. */
struct ofp_header {
    uint8_t version;    /* OFP_VERSION. */
    uint8_t type;       /* One of the OFPT_ constants. */
    uint16_t length;    /* Length including this ofp_header. */
    uint32_t xid;       /* Transaction id associated with this packet.
                           Replies use the same id as was in the request
                           to facilitate pairing. */
};
  • hello
/* OFPT_HELLO.  This message has an empty body, but implementations must
 * ignore any data included in the body, to allow for future extensions. */
struct ofp_hello {
    struct ofp_header header;
};

交换机或者控制器首先发送hello报文,确认openflow通信版本,对方收到协议后,回复一个hello报文,协商版本。

  • Features Request
struct ofp_hello {
    struct ofp_header header;
};

控制器发送此报文,查看交换机具体信息

  • Set Config
/* Switch configuration. */
struct ofp_switch_config {
    struct ofp_header header;
    uint16_t flags;             /* OFPC_* flags. */
    uint16_t miss_send_len;     /* Max bytes of new flow that datapath should
                                   send to the controller. */
};

flags:告知交换机如何处理IP分片,正常、丢弃还是重组

  • Port_Status
struct ofp_port_status {
    struct ofp_header header;
    uint8_t reason;          /* One of OFPPR_*. */
    uint8_t pad[7];          /* Align to 64-bits. */
    struct ofp_phy_port desc;
};
  • Features Reply
struct ofp_phy_port {
    uint16_t port_no;
    uint8_t hw_addr[OFP_ETH_ALEN];
    char name[OFP_MAX_PORT_NAME_LEN]; /* Null-terminated */

    uint32_t config;        /* Bitmap of OFPPC_* flags. */
    uint32_t state;         /* Bitmap of OFPPS_* flags. */

    /* Bitmaps of OFPPF_* that describe features.  All bits zeroed if
     * unsupported or unavailable. */
    uint32_t curr;          /* Current features. */
    uint32_t advertised;    /* Features being advertised by the port. */
    uint32_t supported;     /* Features supported by the port. */
    uint32_t peer;          /* Features advertised by peer. */
};
OFP_ASSERT(sizeof(struct ofp_phy_port) == 48);

/* Switch features. */
struct ofp_switch_features {
    struct ofp_header header;
    uint64_t datapath_id;   /* Datapath unique ID.  The lower 48-bits are for
                               a MAC address, while the upper 16-bits are
                               implementer-defined. */

    uint32_t n_buffers;     /* Max packets buffered at once. */

    uint8_t n_tables;       /* Number of tables supported by datapath. */
    uint8_t pad[3];         /* Align to 64-bits. */

    /* Features. */
    uint32_t capabilities;  /* Bitmap of support "ofp_capabilities". */
    uint32_t actions;       /* Bitmap of supported "ofp_action_type"s. */

    /* Port info.*/
    struct ofp_phy_port ports[0];  /* Port definitions.  The number of ports
                                      is inferred from the length field in
                                      the header. */
};

datapath id 数据通道标识符,用来表示交换机的身份。在每一个控制器中独一无二。
n_buffers 一次最多缓存的数据包数量,即交换机自己的缓存能力。
n_tables 表示交换机支持的流表数量。
capabilities 交换机端口所支持的功能,有流表,端口,STP,队列,ARP等。
actions 交换机所支持的actions,有转发和修改包头两种。
port 交换机连接的端口消息。端口MAC地址,链路数据等。

  • Packet_in
enum ofp_packet_in_reason {
    OFPR_NO_MATCH,          /* No matching flow. */
    OFPR_ACTION             /* Action explicitly output to controller. */
};

/* Packet received on port (datapath -> controller). */
struct ofp_packet_in {
    struct ofp_header header;
    uint32_t buffer_id;     /* ID assigned by datapath. */
    uint16_t total_len;     /* Full length of frame. */
    uint16_t in_port;       /* Port on which frame was received. */
    uint8_t reason;         /* Reason packet is being sent (one of OFPR_*) */
    uint8_t pad;
    uint8_t data[0];        /* Ethernet frame, halfway through 32-bit word,
                               so the IP header is 32-bit aligned.  The
                               amount of data is inferred from the length
                               field in the header.  Because of padding,
                               offsetof(struct ofp_packet_in, data) ==
                               sizeof(struct ofp_packet_in) - 2. */
};

buffer_id packet-in消息所携带的数据包在交换机中的缓存ID。
Total_len 帧的长度。
In_port 数据包进入交换机的入端口号。
Reason packet-in事件的产生原因,分为两种:OFPR_NO_MATCH和OFPR_ACTION。
data 需要处理的未知数据包。

  • Packet_out
struct ofp_action_header {
    uint16_t type;                  /* One of OFPAT_*. */
    uint16_t len;                   /* Length of action, including this
                                       header.  This is the length of action,
                                       including any padding to make it
                                       64-bit aligned. */
    uint8_t pad[4];
};
OFP_ASSERT(sizeof(struct ofp_action_header) == 8);

/* Send packet (controller -> datapath). */
struct ofp_packet_out {
    struct ofp_header header;
    uint32_t buffer_id;           /* ID assigned by datapath (-1 if none). */
    uint16_t in_port;             /* Packet's input port (OFPP_NONE if none). */
    uint16_t actions_len;         /* Size of action array in bytes. */
    struct ofp_action_header actions[0]; /* Actions. */
    /* uint8_t data[0]; */        /* Packet data.  The length is inferred
                                     from the length field in the header.
                                     (Only meaningful if buffer_id == -1.) */
};

actions_len:动作信息长度

  • Flow_mod
struct ofp_match {
    uint32_t wildcards;        /* Wildcard fields. */
    uint16_t in_port;          /* Input switch port. */
    uint8_t dl_src[OFP_ETH_ALEN]; /* Ethernet source address. */
    uint8_t dl_dst[OFP_ETH_ALEN]; /* Ethernet destination address. */
    uint16_t dl_vlan;          /* Input VLAN id. */
    uint8_t dl_vlan_pcp;       /* Input VLAN priority. */
    uint8_t pad1[1];           /* Align to 64-bits */
    uint16_t dl_type;          /* Ethernet frame type. */
    uint8_t nw_tos;            /* IP ToS (actually DSCP field, 6 bits). */
    uint8_t nw_proto;          /* IP protocol or lower 8 bits of
                                * ARP opcode. */
    uint8_t pad2[2];           /* Align to 64-bits */
    uint32_t nw_src;           /* IP source address. */
    uint32_t nw_dst;           /* IP destination address. */
    uint16_t tp_src;           /* TCP/UDP source port. */
    uint16_t tp_dst;           /* TCP/UDP destination port. */
};

/* Flow setup and teardown (controller -> datapath). */
struct ofp_flow_mod {
    struct ofp_header header;
    struct ofp_match match;      /* Fields to match */
    uint64_t cookie;             /* Opaque controller-issued identifier. */

    /* Flow actions. */
    uint16_t command;             /* One of OFPFC_*. */
    uint16_t idle_timeout;        /* Idle time before discarding (seconds). */
    uint16_t hard_timeout;        /* Max time before discarding (seconds). */
    uint16_t priority;            /* Priority level of flow entry. */
    uint32_t buffer_id;           /* Buffered packet to apply to (or -1).
                                     Not meaningful for OFPFC_DELETE*. */
    uint16_t out_port;            /* For OFPFC_DELETE* commands, require
                                     matching entries to include this as an
                                     output port.  A value of OFPP_NONE
                                     indicates no restriction. */
    uint16_t flags;               /* One of OFPFF_*. */
    struct ofp_action_header actions[0]; /* The action length is inferred
                                            from the length field in the
                                            header. */
};

flow_mod是openflow协议核心消息之一,作用是下发流表项。

个人总结

本次实验难度不大,按照实验流程就能进行,但在实验中还是遇到了一些小问题,比如刚开始抓包时总是抓不到openflow协议的包,上网得知要先sudo wireshark才能抓到。如果要抓到flow_mod消息的包,就要开启CLI,pingall后才会看到。进阶部分代码较多,锻炼了我的阅读能力。通过这次实验,我感受到了传统网络和sdn的差别,了解了OpenFlow协议在控制器和交换机之间的交互流程。

标签:struct,uint16,OpenFlow,实践,header,ofp,交换机,实验,port
From: https://www.cnblogs.com/yuyue123/p/16736147.html

相关文章

  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制......
  • 实验3:OpenFlow协议分析实践
    一、基本要求1.搭建拓扑-拓扑代码#!/usr/bin/envpythonfrommininet.netimportMininetfrommininet.nodeimportController,RemoteController,OVSControllerf......
  • 实验3:OpenFlow协议分析实践
    一.实验内容(包含拓展)1、拓扑2、抓包(1)hello控制器6633端口-->交换机47394端口,协议为openflow1.0交换机47394端口-->控制器6633端口,协议为openflow1.5点击查......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践基本要求一、拓扑文件#!/usr/bin/envpythonfrommininet.netimportMininetfrommininet.nodeimportController,RemoteController,O......
  • 实验3:OpenFlow 协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机......
  • 实验3:OpenFlow协议分析实践
    (一)基本要求搭建下图所示拓扑,完成相关IP配置,并实现主机与主机之间的IP通信。用抓包软件获取控制器与交换机之间的通信数据。2.抓包结果HELLO控制器6633端口(我最......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践(一)基本要求1、拓扑文件#!/usr/bin/envpythonfrommininet.netimportMininetfrommininet.nodeimportController,RemoteController......
  • 软件定义网络实验2
    这个作业属于哪个课程https://edu.cnblogs.com/campus/fzzcxy/FZUZCSDN202201这个作业要求在哪里https://edu.cnblogs.com/campus/fzzcxy/FZUZCSDN202201/homewo......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践(一)基本要求拓朴文件点击查看代码#!/usr/bin/envpythonfrommininet.netimportMininetfrommininet.nodeimportController,Remote......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制......