首页 > 其他分享 >实验3:OpenFlow协议分析实践

实验3:OpenFlow协议分析实践

时间:2022-09-27 21:46:29浏览次数:45  
标签:struct OpenFlow 实践 uint32 header ofp 实验 net port

一、基本要求

1. 搭建拓扑-拓扑代码

#!/usr/bin/env python

from mininet.net import Mininet
from mininet.node import Controller, RemoteController, OVSController
from mininet.node import CPULimitedHost, Host, Node
from mininet.node import OVSKernelSwitch, UserSwitch
from mininet.node import IVSSwitch
from mininet.cli import CLI
from mininet.log import setLogLevel, info
from mininet.link import TCLink, Intf
from subprocess import call

def myNetwork():

    net = Mininet( topo=None,
                   build=False,
                   ipBase='192.168.0.0/24')

    info( '*** Adding controller\n' )
    c0=net.addController(name='c0',
                      controller=Controller,
                      protocol='tcp',
                      port=6633)

    info( '*** Add switches\n')
    s1 = net.addSwitch('s1', cls=OVSKernelSwitch)
    s2 = net.addSwitch('s2', cls=OVSKernelSwitch)

    info( '*** Add hosts\n')
    h1 = net.addHost('h1', cls=Host, ip='192.168.0.101/24', defaultRoute=None)
    h2 = net.addHost('h2', cls=Host, ip='192.168.0.102/24', defaultRoute=None)
    h3 = net.addHost('h3', cls=Host, ip='192.168.0.103/24', defaultRoute=None)
    h4 = net.addHost('h4', cls=Host, ip='192.168.0.104/24', defaultRoute=None)

    info( '*** Add links\n')
    net.addLink(h1, s1)
    net.addLink(h3, s1)
    net.addLink(s1, s2)
    net.addLink(s2, h4)
    net.addLink(h2, s2)

    info( '*** Starting network\n')
    net.build()
    info( '*** Starting controllers\n')
    for controller in net.controllers:
        controller.start()

    info( '*** Starting switches\n')
    net.get('s1').start([c0])
    net.get('s2').start([c0])

    info( '*** Post configure switches and hosts\n')

    CLI(net)
    net.stop()

if __name__ == '__main__':
    setLogLevel( 'info' )
    myNetwork()

2.抓包结果

Hello

控制器6633端口(最高能支持OpenFlow 1.5) ---> 交换机54760端口

交换机54760端口(最高能支持OpenFlow 1.5) ---> 控制器6633端口

于是双方建立连接,并使用OpenFlow 1.5

Features Request /

控制器6633端口(我需要你的特征信息) ---> 交换机54760端口

Set Conig

控制器6633端口(按给的flag和max bytes of packet进行配置) ---> 交换机54760端口

  • flag:指示交换机如何处理 IP 分片数据包
  • max bytes of packet:当交换机无法处理到达的数据包时,向控制器发送如何处理的最大字节数,本实验中控制器发送的值是0x0080,即128字节。

Port_Status

当交换机端口发生变化时,告知控制器相应的端口状态。

Features Reply

交换机54760端口(这是我的特征信息,请查收) ---> 控制器6633端口

Packet_in

交换机54760端口(有数据包进来,请指示)--- 控制器6633端口

分析抓取的数据包,可以发现是因为交换机发现此时自己并没有匹配的流表(Reason: No matching flow (table-miss flow entry) (0)),所以要问控制器如何处理

Flow_mod

分析抓取的flow_mod数据包,控制器通过6633端口向交换机54760端口、交换机54760端口下发流表项,指导数据的转发处理

Packet_out

控制器6633端口(请按照我给你的action进行处理) ---> 交换机54760端口

3. 分析OpenFlow协议中交换机与控制器的消息交互过程,画出相关交互图或流程图。

4. 回答:交换机与控制器建立通信时是使用TCP协议还是UDP协议?

TCP协议

二.进阶要求

数据包通用段(以下部分不再重复)

/* Header on all OpenFlow packets. */
struct ofp_header {
    uint8_t version;    /* OFP_VERSION. */
    uint8_t type;       /* One of the OFPT_ constants. */
    uint16_t length;    /* Length including this ofp_header. */
    uint32_t xid;       /* Transaction id associated with this packet.
                           Replies use the same id as was in the request
                           to facilitate pairing. */
};
OFP_ASSERT(sizeof(struct ofp_header) == 8);

Hello


/* OFPT_HELLO.  This message has an empty body, but implementations must
 * ignore any data included in the body, to allow for future extensions. */
struct ofp_hello {
    struct ofp_header header;
};

Features Request /

struct ofp_phy_port {
    uint16_t port_no;
    uint8_t hw_addr[OFP_ETH_ALEN];
    char name[OFP_MAX_PORT_NAME_LEN]; /* Null-terminated */

    uint32_t config;        /* Bitmap of OFPPC_* flags. */
    uint32_t state;         /* Bitmap of OFPPS_* flags. */

    /* Bitmaps of OFPPF_* that describe features.  All bits zeroed if
     * unsupported or unavailable. */
    uint32_t curr;          /* Current features. */
    uint32_t advertised;    /* Features being advertised by the port. */
    uint32_t supported;     /* Features supported by the port. */
    uint32_t peer;          /* Features advertised by peer. */
};
OFP_ASSERT(sizeof(struct ofp_phy_port) == 48);

/* Switch features. */
struct ofp_switch_features {
    struct ofp_header header;
    uint64_t datapath_id;   /* Datapath unique ID.  The lower 48-bits are for
                               a MAC address, while the upper 16-bits are
                               implementer-defined. */

    uint32_t n_buffers;     /* Max packets buffered at once. */

    uint8_t n_tables;       /* Number of tables supported by datapath. */
    uint8_t pad[3];         /* Align to 64-bits. */

    /* Features. */
    uint32_t capabilities;  /* Bitmap of support "ofp_capabilities". */
    uint32_t actions;       /* Bitmap of supported "ofp_action_type"s. */

    /* Port info.*/
    struct ofp_phy_port ports[0];  /* Port definitions.  The number of ports
                                      is inferred from the length field in
                                      the header. */
};
OFP_ASSERT(sizeof(struct ofp_switch_features) == 32);

Set Conig

struct ofp_switch_config {
    struct ofp_header header;
    uint16_t flags;             /* OFPC_* flags. */
    uint16_t miss_send_len;     /* Max bytes of new flow that datapath should
                                   send to the controller. */
};


Port_Status

/* A physical port has changed in the datapath */
struct ofp_port_status {
    struct ofp_header header;
    uint8_t reason;          /* One of OFPPR_*. */
    uint8_t pad[7];          /* Align to 64-bits. */
    struct ofp_phy_port desc;
};

Features Reply

struct ofp_switch_features {
    struct ofp_header header;
    uint64_t datapath_id;   /* Datapath unique ID.  The lower 48-bits are for
                               a MAC address, while the upper 16-bits are
                               implementer-defined. */

    uint32_t n_buffers;     /* Max packets buffered at once. */

    uint8_t n_tables;       /* Number of tables supported by datapath. */
    uint8_t pad[3];         /* Align to 64-bits. */

    /* Features. */
    uint32_t capabilities;  /* Bitmap of support "ofp_capabilities". */
    uint32_t actions;       /* Bitmap of supported "ofp_action_type"s. */

    /* Port info.*/
    struct ofp_phy_port ports[0];  /* Port definitions.  The number of ports
                                      is inferred from the length field in
                                      the header. */
};

Packet_in

/* Why is this packet being sent to the controller? */
enum ofp_packet_in_reason {
    OFPR_NO_MATCH,          /* No matching flow. */
    OFPR_ACTION             /* Action explicitly output to controller. */
};

/* Packet received on port (datapath -> controller). */
struct ofp_packet_in {
    struct ofp_header header;
    uint32_t buffer_id;     /* ID assigned by datapath. */
    uint16_t total_len;     /* Full length of frame. */
    uint16_t in_port;       /* Port on which frame was received. */
    uint8_t reason;         /* Reason packet is being sent (one of OFPR_*) */
    uint8_t pad;
    uint8_t data[0];        /* Ethernet frame, halfway through 32-bit word,
                               so the IP header is 32-bit aligned.  The
                               amount of data is inferred from the length
                               field in the header.  Because of padding,
                               offsetof(struct ofp_packet_in, data) ==
                               sizeof(struct ofp_packet_in) - 2. */
};
OFP_ASSERT(sizeof(struct ofp_packet_in) == 20);

Flow_mod


/* Modify behavior of the physical port */
struct ofp_port_mod {
    struct ofp_header header;
    uint16_t port_no;
    uint8_t hw_addr[OFP_ETH_ALEN]; /* The hardware address is not
                                      configurable.  This is used to
                                      sanity-check the request, so it must
                                      be the same as returned in an
                                      ofp_phy_port struct. */

    uint32_t config;        /* Bitmap of OFPPC_* flags. */
    uint32_t mask;          /* Bitmap of OFPPC_* flags to be changed. */

    uint32_t advertise;     /* Bitmap of "ofp_port_features"s.  Zero all
                               bits to prevent any action taking place. */
    uint8_t pad[4];         /* Pad to 64-bits. */
};

Packet_out

struct ofp_packet_out {
    struct ofp_header header;
    uint32_t buffer_id;           /* ID assigned by datapath (-1 if none). */
    uint16_t in_port;             /* Packet's input port (OFPP_NONE if none). */
    uint16_t actions_len;         /* Size of action array in bytes. */
    struct ofp_action_header actions[0]; /* Actions. */
    /* uint8_t data[0]; */        /* Packet data.  The length is inferred
                                     from the length field in the header.
                                     (Only meaningful if buffer_id == -1.) */
};

三、实验总结
1.本实验为验证性实验,较为简单。通过实验运用 wireshark 对 OpenFlow 协议数据交互过程进行抓包,并且能够借助包解析工具,分析与解释 OpenFlow协议的数据包交互过程与机制。
2.在实验过程中抓不到包,发现是没有先打开wireshark再运行拓扑。
3.在实验过程中没有寻找到Flow_MOD,发现是没有在运行的拓扑文件中发送请求。

标签:struct,OpenFlow,实践,uint32,header,ofp,实验,net,port
From: https://www.cnblogs.com/BlueBotton/p/16736035.html

相关文章

  • 实验3:OpenFlow协议分析实践
    一.实验内容(包含拓展)1、拓扑2、抓包(1)hello控制器6633端口-->交换机47394端口,协议为openflow1.0交换机47394端口-->控制器6633端口,协议为openflow1.5点击查......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践基本要求一、拓扑文件#!/usr/bin/envpythonfrommininet.netimportMininetfrommininet.nodeimportController,RemoteController,O......
  • 实验3:OpenFlow 协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机......
  • 实验3:OpenFlow协议分析实践
    (一)基本要求搭建下图所示拓扑,完成相关IP配置,并实现主机与主机之间的IP通信。用抓包软件获取控制器与交换机之间的通信数据。2.抓包结果HELLO控制器6633端口(我最......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践(一)基本要求1、拓扑文件#!/usr/bin/envpythonfrommininet.netimportMininetfrommininet.nodeimportController,RemoteController......
  • 软件定义网络实验2
    这个作业属于哪个课程https://edu.cnblogs.com/campus/fzzcxy/FZUZCSDN202201这个作业要求在哪里https://edu.cnblogs.com/campus/fzzcxy/FZUZCSDN202201/homewo......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践(一)基本要求拓朴文件点击查看代码#!/usr/bin/envpythonfrommininet.netimportMininetfrommininet.nodeimportController,Remote......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制......
  • 实验3:OpenFlow协议分析实践
    一、实验目的1.能够运用wireshark对OpenFlow协议数据交互过程进行抓包;2.能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制。二、实验环境Ubuntu......
  • 实验2:Open vSwitch虚拟交换机实践
    实验2:OpenvSwitch虚拟交换机实践(一)基本要求ovs-vsctl基础操作实践:创建OVS交换机,以ovs-xxxxxxxxx命名,其中xxxxxxxxx为本人学号。在创建的交换机上增加端口p0和p1,设置p0......