首页 > 其他分享 >Pytorch | 输入的形状为[seq_len, batch_size, d_model]和 [batch_size, seq_len, d_model]的区别

Pytorch | 输入的形状为[seq_len, batch_size, d_model]和 [batch_size, seq_len, d_model]的区别

时间:2023-06-26 13:33:24浏览次数:39  
标签:tensor seq batch len 向量 size

首先导入依赖的torch包。

import torch

我们设:

  • seq_len(序列的最大长度):5
  • batch_size(批量大小):2
  • d_model(每个单词被映射为的向量的维度):10
  • heads(多头注意力机制的头数):5
  • d_k(每个头的特征数):2

1、输入形状为:[seq_len, batch_size, d_model]

input_tensor = torch.randn(5, 2, 10)

input_tensor表示输入到模型的张量,输入形状为:[seq_len, batch_size, d_model]。

input_tensor

# 输出结果
'''
tensor([[[-0.0564, -0.4915,  0.1572,  0.1950, -0.1457,  1.5368,  1.1635,
           0.6610, -0.6690, -1.2407],
         [ 0.2209, -1.2430,  1.3436, -1.6678, -2.6158,  1.3362, -0.3048,
          -0.3680, -1.0620,  0.6028]],

        [[ 0.5403,  2.8848, -1.1311,  0.6405, -2.8894,  0.0266,  0.3725,
          -1.4034, -1.0788, -0.9796],
         [ 0.0851,  0.3146,  1.1101, -0.1377, -0.3531, -0.6355, -1.1008,
           0.4649, -1.0249,  2.3093]],

        [[ 0.9773,  0.0954, -0.9705,  0.3955, -0.8477, -0.5051,  1.5252,
           2.4351, -0.3550, -0.7516],
         [ 0.8564,  1.3546, -0.0192, -1.3067,  0.2836, -0.2337, -0.9309,
          -0.9528,  0.1533,  0.1920]],

        [[-0.7944,  0.0292,  0.1796, -0.1784,  0.4151, -1.7918,  2.2592,
          -0.3511, -0.6939, -0.7411],
         [-1.5070, -0.0961,  0.1144,  0.1852,  0.9209,  0.8497,  0.0394,
          -0.3052, -0.8078, -0.9088]],

        [[-0.6081, -0.7641, -0.4355,  0.1307,  0.8386, -0.3480, -0.6175,
          -1.2444, -0.6881,  0.7320],
         [-2.1062, -0.3705, -1.5179,  1.7906, -0.3040,  1.8528,  2.8797,
           1.2698,  0.2206,  0.4556]]])
'''
'''
[[-0.0564, -0.4915,  0.1572,  0.1950, -0.1457,  1.5368,  1.1635,
   0.6610, -0.6690, -1.2407],
 [ 0.2209, -1.2430,  1.3436, -1.6678, -2.6158,  1.3362, -0.3048,
  -0.3680, -1.0620,  0.6028]]
每一个向量表示句子中一个词的向量表示,而这两个词是在两个不同句子的相同位置上。为什么是两个句子呢?因为批次大小为2。
像这样每一块的第一个向量就是第一个句子的词向量表示,第二个向量就是第二个句子的词向量表示。随着批次的增加,以此类推。

'''
a1 = input_tensor.view(5,2,5,2)

对输入进行维度变换,以适应模型的输入。(这里比如是多头注意力)

维度要变为:[seq_len, batch_size,heads, d_k],其中$d_model = heads*d_k$。

a1

# 输出结果
'''
tensor([[[[-0.0564, -0.4915],
          [ 0.1572,  0.1950],
          [-0.1457,  1.5368],
          [ 1.1635,  0.6610],
          [-0.6690, -1.2407]],

         [[ 0.2209, -1.2430],
          [ 1.3436, -1.6678],
          [-2.6158,  1.3362],
          [-0.3048, -0.3680],
          [-1.0620,  0.6028]]],


        [[[ 0.5403,  2.8848],
          [-1.1311,  0.6405],
          [-2.8894,  0.0266],
          [ 0.3725, -1.4034],
          [-1.0788, -0.9796]],

         [[ 0.0851,  0.3146],
          [ 1.1101, -0.1377],
          [-0.3531, -0.6355],
          [-1.1008,  0.4649],
          [-1.0249,  2.3093]]],


        [[[ 0.9773,  0.0954],
          [-0.9705,  0.3955],
          [-0.8477, -0.5051],
          [ 1.5252,  2.4351],
          [-0.3550, -0.7516]],

         [[ 0.8564,  1.3546],
          [-0.0192, -1.3067],
          [ 0.2836, -0.2337],
          [-0.9309, -0.9528],
          [ 0.1533,  0.1920]]],


        [[[-0.7944,  0.0292],
          [ 0.1796, -0.1784],
          [ 0.4151, -1.7918],
          [ 2.2592, -0.3511],
          [-0.6939, -0.7411]],

         [[-1.5070, -0.0961],
          [ 0.1144,  0.1852],
          [ 0.9209,  0.8497],
          [ 0.0394, -0.3052],
          [-0.8078, -0.9088]]],


        [[[-0.6081, -0.7641],
          [-0.4355,  0.1307],
          [ 0.8386, -0.3480],
          [-0.6175, -1.2444],
          [-0.6881,  0.7320]],

         [[-2.1062, -0.3705],
          [-1.5179,  1.7906],
          [-0.3040,  1.8528],
          [ 2.8797,  1.2698],
          [ 0.2206,  0.4556]]]])
'''
'''
input_tensor:
[[-0.0564, -0.4915,  0.1572,  0.1950, -0.1457,  1.5368,  1.1635,
   0.6610, -0.6690, -1.2407],
 [ 0.2209, -1.2430,  1.3436, -1.6678, -2.6158,  1.3362, -0.3048,
  -0.3680, -1.0620,  0.6028]]
a1:
[[[-0.0564, -0.4915],
  [ 0.1572,  0.1950],
  [-0.1457,  1.5368],
  [ 1.1635,  0.6610],
  [-0.6690, -1.2407]],

 [[ 0.2209, -1.2430],
  [ 1.3436, -1.6678],
  [-2.6158,  1.3362],
  [-0.3048, -0.3680],
  [-1.0620,  0.6028]]]
我们可以从input_tensor和a1的数据进行对比。我们可以看出,对于input_tensor的一个词向量中,在a1中把这个词向量分为了五行两列的向量矩阵。也就是说我们把句子中的一个词的特征分为五份,每一份两个特征。对应在多头注意力机制上就是:我们有五个头,每个头处理两个特征。

'''

2、输入形状为:[batch_size, seq_len,d_model]

output_tensor = input_tensor.transpose(0, 1)

output_tensor表示输入到模型的张量,输入形状为:[batch_size, seq_len,d_model]。

output_tensor

# 输出结果
'''
tensor([[[-0.0564, -0.4915,  0.1572,  0.1950, -0.1457,  1.5368,  1.1635,
           0.6610, -0.6690, -1.2407],
         [ 0.5403,  2.8848, -1.1311,  0.6405, -2.8894,  0.0266,  0.3725,
          -1.4034, -1.0788, -0.9796],
         [ 0.9773,  0.0954, -0.9705,  0.3955, -0.8477, -0.5051,  1.5252,
           2.4351, -0.3550, -0.7516],
         [-0.7944,  0.0292,  0.1796, -0.1784,  0.4151, -1.7918,  2.2592,
          -0.3511, -0.6939, -0.7411],
         [-0.6081, -0.7641, -0.4355,  0.1307,  0.8386, -0.3480, -0.6175,
          -1.2444, -0.6881,  0.7320]],

        [[ 0.2209, -1.2430,  1.3436, -1.6678, -2.6158,  1.3362, -0.3048,
          -0.3680, -1.0620,  0.6028],
         [ 0.0851,  0.3146,  1.1101, -0.1377, -0.3531, -0.6355, -1.1008,
           0.4649, -1.0249,  2.3093],
         [ 0.8564,  1.3546, -0.0192, -1.3067,  0.2836, -0.2337, -0.9309,
          -0.9528,  0.1533,  0.1920],
         [-1.5070, -0.0961,  0.1144,  0.1852,  0.9209,  0.8497,  0.0394,
          -0.3052, -0.8078, -0.9088],
         [-2.1062, -0.3705, -1.5179,  1.7906, -0.3040,  1.8528,  2.8797,
           1.2698,  0.2206,  0.4556]]])
'''
'''
[[-0.0564, -0.4915,  0.1572,  0.1950, -0.1457,  1.5368,  1.1635,
   0.6610, -0.6690, -1.2407],
 [ 0.5403,  2.8848, -1.1311,  0.6405, -2.8894,  0.0266,  0.3725,
  -1.4034, -1.0788, -0.9796],
 [ 0.9773,  0.0954, -0.9705,  0.3955, -0.8477, -0.5051,  1.5252,
   2.4351, -0.3550, -0.7516],
 [-0.7944,  0.0292,  0.1796, -0.1784,  0.4151, -1.7918,  2.2592,
  -0.3511, -0.6939, -0.7411],
 [-0.6081, -0.7641, -0.4355,  0.1307,  0.8386, -0.3480, -0.6175,
  -1.2444, -0.6881,  0.7320]]
在这一块中,每一个向量是一个句子中的一个词向量,这五个词向量都是一个句子的。由于有两块这样的向量,说明有两个句子,每个句子五个词。
第一块的五个向量是第一个句子的所有词向量,第二块的五个向量是第二个句子的所有词向量。随着批次的增加,以此类推。

'''
a2 = output_tensor.view(2,5,5,2)

对输入进行维度变换,以适应模型的输入。(这里比如是多头注意力)

维度要变为:[batch_size,seq_len,heads, d_k],其中$d_model = heads*d_k$。

a2

# 输出结果
'''
tensor([[[[-0.0564, -0.4915],
          [ 0.1572,  0.1950],
          [-0.1457,  1.5368],
          [ 1.1635,  0.6610],
          [-0.6690, -1.2407]],

         [[ 0.5403,  2.8848],
          [-1.1311,  0.6405],
          [-2.8894,  0.0266],
          [ 0.3725, -1.4034],
          [-1.0788, -0.9796]],

         [[ 0.9773,  0.0954],
          [-0.9705,  0.3955],
          [-0.8477, -0.5051],
          [ 1.5252,  2.4351],
          [-0.3550, -0.7516]],

         [[-0.7944,  0.0292],
          [ 0.1796, -0.1784],
          [ 0.4151, -1.7918],
          [ 2.2592, -0.3511],
          [-0.6939, -0.7411]],

         [[-0.6081, -0.7641],
          [-0.4355,  0.1307],
          [ 0.8386, -0.3480],
          [-0.6175, -1.2444],
          [-0.6881,  0.7320]]],


        [[[ 0.2209, -1.2430],
          [ 1.3436, -1.6678],
          [-2.6158,  1.3362],
          [-0.3048, -0.3680],
          [-1.0620,  0.6028]],

         [[ 0.0851,  0.3146],
          [ 1.1101, -0.1377],
          [-0.3531, -0.6355],
          [-1.1008,  0.4649],
          [-1.0249,  2.3093]],

         [[ 0.8564,  1.3546],
          [-0.0192, -1.3067],
          [ 0.2836, -0.2337],
          [-0.9309, -0.9528],
          [ 0.1533,  0.1920]],

         [[-1.5070, -0.0961],
          [ 0.1144,  0.1852],
          [ 0.9209,  0.8497],
          [ 0.0394, -0.3052],
          [-0.8078, -0.9088]],

         [[-2.1062, -0.3705],
          [-1.5179,  1.7906],
          [-0.3040,  1.8528],
          [ 2.8797,  1.2698],
          [ 0.2206,  0.4556]]]])
'''
'''
output_tensor:
[[-0.0564, -0.4915,  0.1572,  0.1950, -0.1457,  1.5368,  1.1635,
   0.6610, -0.6690, -1.2407],
 [ 0.5403,  2.8848, -1.1311,  0.6405, -2.8894,  0.0266,  0.3725,
  -1.4034, -1.0788, -0.9796],
 [ 0.9773,  0.0954, -0.9705,  0.3955, -0.8477, -0.5051,  1.5252,
   2.4351, -0.3550, -0.7516],
 [-0.7944,  0.0292,  0.1796, -0.1784,  0.4151, -1.7918,  2.2592,
  -0.3511, -0.6939, -0.7411],
 [-0.6081, -0.7641, -0.4355,  0.1307,  0.8386, -0.3480, -0.6175,
  -1.2444, -0.6881,  0.7320]]
a2:
		[[[-0.0564, -0.4915],
          [ 0.1572,  0.1950],
          [-0.1457,  1.5368],
          [ 1.1635,  0.6610],
          [-0.6690, -1.2407]],

         [[ 0.5403,  2.8848],
          [-1.1311,  0.6405],
          [-2.8894,  0.0266],
          [ 0.3725, -1.4034],
          [-1.0788, -0.9796]],

         [[ 0.9773,  0.0954],
          [-0.9705,  0.3955],
          [-0.8477, -0.5051],
          [ 1.5252,  2.4351],
          [-0.3550, -0.7516]],

         [[-0.7944,  0.0292],
          [ 0.1796, -0.1784],
          [ 0.4151, -1.7918],
          [ 2.2592, -0.3511],
          [-0.6939, -0.7411]],

         [[-0.6081, -0.7641],
          [-0.4355,  0.1307],
          [ 0.8386, -0.3480],
          [-0.6175, -1.2444],
          [-0.6881,  0.7320]]],
我们可以从output_tensor和a2的数据进行对比。我们可以看出,对于output_tensor的一块中(一个句子中)的五个词向量,在a2中把这五个词向量分为了五行两列的向量矩阵(共五个)。也就是说我们把句子中的每个词的特征分为五份,每一份两个特征。对应在多头注意力机制上就是:我们有五个头,每个头处理两个特征。

'''

到此,我们已经从例子中理解了两种输入的区别,也理解了它们的含义。需要注意的是,这两种输入形状是等价的,它们之间的不同仅仅是维度顺序的不同。在实际应用中,我们可以根据具体的神经网络模型的要求来选择输入张量的形状。

标签:tensor,seq,batch,len,向量,size
From: https://www.cnblogs.com/zhangxuegold/p/17505395.html

相关文章

  • liunx服务器使用selenium
    前言最近在本地windows系统(下面简称本地)用selenium写了一个自动化爬虫,放到我liunx服务器(下面简称服务器)上面运行报错,记录处理流程一、服务器下载google-chrome、chromedriver一开始以为和本地一样,下好chrome浏览器和驱动就可以直接运行了(太天真了~)1、下载chromewgethttps://dl.goo......
  • LLM-Blender:大语言模型排序融合框架
    随着Alpaca,Vicuna,Baize,Koala等诸多大型语言模型的问世,研究人员发现虽然一些模型比如Vicuna的整体的平均表现最优,但是针对每个单独的输入,其最优模型的分布实际上是非常分散的,比如最好的Vicuna也只在20%的任务里比其他模型有优势。有没有可能通过集成学习来综合诸多开源的「......
  • 下载中间件实战-Scrapy与Selenium结合
    下载中间件实战-Scrapy与Selenium结合有的页面反爬技术比较高端,一时破解不了,这时我们就是可以考虑使用selenium来降低爬取的难度。问题来了,如何将Scrapy与Selenium结合使用呢?思考的思路: 只是用Selenium来帮助下载数据。因此可以考虑通过下载中间件来处理这块内容。Spider文......
  • Selenium基础:下拉框操作 06
    *使用select方法方法一:fromselenium.webdriver.support.uiimportSelect方法二:fromselenium.webdriver.support.selectimportSelect选择项的选择,有3种方法:select_by_index(index):通过索引选择select_by_value(value):通过value值选择select_by_visible_text(text):通过......
  • 使用java中的Calendar遇到的时区问题
    项目中有一个增加1小时的工具函数结果今天测试出现了一个问题原因是1986年的9月13号到14号之间会有一个时区的转换需要程序特殊处理下这是原函数的结果SatSep1322:00:00CDT1986SatSep1323:00:00CDT1986SatSep1323:00:00CST1986SunSep1400:0......
  • Selenium基础:鼠标操作 05
    *需要导入ActionChains类fromselenium.webdriver.common.action_chainsimportActionChains1、鼠标右击context_click(element)方法fromseleniumimportwebdriver#导入actionchainsfromselenium.webdriver.common.action_chainsimportActionChainsimporttime......
  • dbca -silent -responsefile 建库由于tmpfs太小报错ORA-27102: out of memory
    错误信息:[oracle@db01~]$dbca-silent-responsefiledbca.rspCopyingdatabasefiles1%complete2%complete4%complete12%complete100%completeLookatthelogfile"/DBSoft/oracle/cfgtoollogs/dbca/woo/woo.log"forfurtherdetails.[oracle@db01......
  • Go常见错误集锦之混淆slice中的长度(length)和容量(capacity)
    原文文章:https://zhuanlan.zhihu.com/p/413972333 在Go语言中,slice的底层实现是数组,也就是说,切片的数据实际上是被存储在数组中的。如果后端的数组空间已经满了或是空数组,则slice结构体负责处理数组容量的扩容或缩容逻辑。此外,slice的结构体中共拥有三个字段:一个指针,指向后......
  • 经典网络结构GoogleNet之Inception-v1 v2 v3 v4 Resnet
    论文地址—2014年9月的论文Going Deeper with Convolutions提出的Inception V1(top-5错误率6.67%)。—2015年2月的论文Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate提出的Inception V2(top-5错误率4.8%)。—2015年12月的......
  • TensorFlow10.4 卷积神经网络-batchnorm
    我们发现这个sigmoid函数在小于-4或者大于4的时候他的导数趋近于0。然后我们送进去的input的值在[-100,100]之间,这样很容易引起梯度弥散的现象。所以我们一般情况下使用ReLU函数,但是我们有时候又不得不使用sigmoid函数。这个时候我们在送到下一层的时候我们应该先经过Normalizatio......