组合模式
组合模式是一种结构型设计模式, 你可以使用它将对象组合成树状结构, 并且能像使用独立对象一样使用它们。
问题
如果应用的核心模型能用树状结构表示, 在应用中使用组合模式才有价值。
例如, 你有两类对象: 产品
和 盒子
。 一个盒子中可以包含多个 产品
或者几个较小的 盒子
。 这些小 盒子
中同样可以包含一些 产品
或更小的 盒子
, 以此类推。
假设你希望在这些类的基础上开发一个定购系统。 订单中可以包含无包装的简单产品, 也可以包含装满产品的盒子…… 以及其他盒子。 此时你会如何计算每张订单的总价格呢?
订单中可能包括各种产品, 这些产品放置在盒子中, 然后又被放入一层又一层更大的盒子中。 整个结构看上去像是一棵倒过来的树。
你可以尝试直接计算: 打开所有盒子, 找到每件产品, 然后计算总价。 这在真实世界中或许可行, 但在程序中, 你并不能简单地使用循环语句来完成该工作。 你必须事先知道所有 产品
和 盒子
的类别, 所有盒子的嵌套层数以及其他繁杂的细节信息。 因此, 直接计算极不方便, 甚至完全不可行。
解决方案
组合模式建议使用一个通用接口来与 产品
和 盒子
进行交互, 并且在该接口中声明一个计算总价的方法。
那么方法该如何设计呢? 对于一个产品, 该方法直接返回其价格; 对于一个盒子, 该方法遍历盒子中的所有项目, 询问每个项目的价格, 然后返回该盒子的总价格。 如果其中某个项目是小一号的盒子, 那么当前盒子也会遍历其中的所有项目, 以此类推, 直到计算出所有内部组成部分的价格。 你甚至可以在盒子的最终价格中增加额外费用, 作为该盒子的包装费用。
组合模式以递归方式处理对象树中的所有项目
该方式的最大优点在于你无需了解构成树状结构的对象的具体类。 你也无需了解对象是简单的产品还是复杂的盒子。 你只需调用通用接口以相同的方式对其进行处理即可。 当你调用该方法后, 对象会将请求沿着树结构传递下去。
真实世界类比
部队结构的例子。
大部分国家的军队都采用层次结构管理。 每支部队包括几个师, 师由旅构成, 旅由团构成, 团可以继续划分为排。 最后, 每个排由一小队实实在在的士兵组成。 军事命令由最高层下达, 通过每个层级传递, 直到每位士兵都知道自己应该服从的命令。
组合模式结构
- 组件 (Component) 接口描述了树中简单项目和复杂项目所共有的操作。
- 叶节点 (Leaf) 是树的基本结构, 它不包含子项目。
一般情况下, 叶节点最终会完成大部分的实际工作, 因为它们无法将工作指派给其他部分。 - 容器 (Container)——又名 “组合 (Composite)”——是包含叶节点或其他容器等子项目的单位。 容器不知道其子项目所属的具体类, 它只通过通用的组件接口与其子项目交互。
容器接收到请求后会将工作分配给自己的子项目, 处理中间结果, 然后将最终结果返回给客户端。 - 客户端 (Client) 通过组件接口与所有项目交互。 因此, 客户端能以相同方式与树状结构中的简单或复杂项目交互。
伪代码
在本例中, 我们将借助组合模式帮助你在图形编辑器中实现一系列的几何图形。
几何形状编辑器示例。
组合图形
CompoundGraphic是一个容器, 它可以由多个包括容器在内的子图形构成。 组合图形与简单图形拥有相同的方法。 但是, 组合图形自身并不完成具体工作, 而是将请求递归地传递给自己的子项目, 然后 “汇总” 结果。
通过所有图形类所共有的接口, 客户端代码可以与所有图形互动。 因此, 客户端不知道与其交互的是简单图形还是组合图形。 客户端可以与非常复杂的对象结构进行交互, 而无需与组成该结构的实体类紧密耦合。
组合模式适合应用场景
如果你需要实现树状对象结构, 可以使用组合模式。
组合模式为你提供了两种共享公共接口的基本元素类型: 简单叶节点和复杂容器。 容器中可以包含叶节点和其他容器。 这使得你可以构建树状嵌套递归对象结构。
如果你希望客户端代码以相同方式处理简单和复杂元素, 可以使用该模式。
组合模式中定义的所有元素共用同一个接口。 在这一接口的帮助下, 客户端不必在意其所使用的对象的具体类。
实现方式
- 确保应用的核心模型能够以树状结构表示。 尝试将其分解为简单元素和容器。 记住, 容器必须能够同时包含简单元素和其他容器。
- 声明组件接口及其一系列方法, 这些方法对简单和复杂元素都有意义。
- 创建一个叶节点类表示简单元素。 程序中可以有多个不同的叶节点类。
- 创建一个容器类表示复杂元素。 在该类中, 创建一个数组成员变量来存储对于其子元素的引用。 该数组必须能够同时保存叶节点和容器, 因此请确保将其声明为组合接口类型。
实现组件接口方法时, 记住容器应该将大部分工作交给其子元素来完成。 - 最后, 在容器中定义添加和删除子元素的方法。
记住, 这些操作可在组件接口中声明。 这将会违反接口隔离原则, 因为叶节点类中的这些方法为空。 但是, 这可以让客户端无差别地访问所有元素, 即使是组成树状结构的元素。
组合模式优缺点
- 你可以利用多态和递归机制更方便地使用复杂树结构。
- 开闭原则。 无需更改现有代码, 你就可以在应用中添加新元素, 使其成为对象树的一部分。
- 对于功能差异较大的类, 提供公共接口或许会有困难。 在特定情况下, 你需要过度一般化组件接口, 使其变得令人难以理解。
代码示例
Go 组合模式讲解和代码示例
组合是一种结构型设计模式, 你可以使用它将对象组合成树状结构, 并且能像使用独立对象一样使用它们。
对于绝大多数需要生成树状结构的问题来说, 组合都是非常受欢迎的解决方案。 组合最主要的功能是在整个树状结构上递归调用方法并对结果进行汇总。
概念示例
让我们试着用一个操作系统文件系统的例子来理解组合模式。 文件系统中有两种类型的对象: 文件和文件夹。 在某些情形中, 文件和文件夹应被视为相同的对象。 这就是组合模式发挥作用的时候了。
想象一下, 你需要在文件系统中搜索特定的关键词。 这一搜索操作需要同时作用于文件和文件夹上。 对于文件而言, 其只会查看文件的内容; 对于文件夹则会在其内部的所有文件中查找关键词。
file.go: 组件接口
package main
import "fmt"
type File struct {
name string
}
func (f *File) search(keyword string) {
fmt.Printf("searching for keyword %s in file %s\n", keyword, f.name)
}
func (f *File) getName() string {
return f.name
}
folder.go: 组合
package main
import "fmt"
type Folder struct {
components []Component
name string
}
func (f *Folder) search(keyword string) {
fmt.Printf("searching recursvely for keyword %s in folder %s \n", keyword, f.name)
for _, component := range f.components {
component.search(keyword)
}
}
func (f *Folder) add(c Component) {
f.components = append(f.components, c)
}
component.go: 叶子
package main
type Component interface {
search(string)
}
main.go: 客户端代码
package main
func main() {
file1 := &File{name: "File1"}
file2 := &File{name: "File2"}
file3 := &File{name: "File3"}
folder1 := &Folder{
name: "Folder1",
}
folder1.add(file1)
folder2 := &Folder{
name: "Folder2",
}
folder2.add(file2)
folder2.add(file3)
folder2.add(folder1)
folder2.search("rose")
}
output.txt: 执行结果
# Type 'dlv help' for list of commands.
searching recursvely for keyword rose in folder Folder2
searching for keyword rose in file File2
searching for keyword rose in file File3
searching recursvely for keyword rose in folder Folder1
searching for keyword rose in file File1
Process 60594 has exited with status 0
Detaching
标签:容器,盒子,组合,keyword,树状,接口,2023,设计模式
From: https://blog.51cto.com/demo007x/6541051