首页 > 其他分享 >自动化机器学习(AutoML)文献/工具/项目资源大列表分享

自动化机器学习(AutoML)文献/工具/项目资源大列表分享

时间:2023-06-23 13:09:09浏览次数:44  
标签:Search Neural al 列表 AutoML Architecture Learning 自动化 et


自动化机器学习(AutoML)文献/工具/项目资源大列表分享_深度学习

    本文整理了与自动化机器学习相关的经典论文、开源工具、项目、免费经典书籍、会议、经典文章和其他资源的列表。

AutoML介绍

    AutoML是使用机器学习方法和过程来自动化机器学习系统并使其更容易访问的相关的工具和技术。它存在了几十年,所以不是一个全新的想法。

    Google Brain和许多其他公司最近的工作重点是AutoML,一些公司已经将这项技术商业化。因此,它已经成为AutoML的主要测试领域之一。

 AutoML技术有很多种,包括:

        神经网络架构搜索

        超参数优化

        优化器搜索

        数据扩充搜索

        学习学习/元学习

        以及更多

    资源整理自网络,原文地址:https://github.com/windmaple/awesome-AutoML

经典论文

AutoML调研

    A Survey on Neural Architecture Search (Wistuba et al. 2019)

    Neural Architecture Search: A Survey (Elsken et al. 2019)

    Taking Human out of Learning Applications: A Survey on Automated Machine Learning (Yao et al. 2018)

神经架构搜索

    PC-DARTS: Partial Channel Connections for Memory-Efficient Differentiable Architecture Search (Xu et al. 2019) - code

    Single Path One-Shot Neural Architecture Search with Uniform Sampling (Guo et al. 2019)

    AutoGAN: Neural Architecture Search for Generative Adversarial Networks (Gong et al. 2019)

    MixConv: Mixed Depthwise Convolutional Kernels (Tan et al. 2019)

    MoGA: Searching Beyond MobileNetV3 (Chu et al. 2019) - code

    Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation (Liu et al. 2019)

    DetNAS: Backbone Search for Object Detection (Chen et al. 2019)

    Dynamic Distribution Pruning for Efficient Network Architecture Search (Zheng et al. 2019)

    FairNAS: Rethinking Evaluation Fairness of Weight Sharing Neural Architecture Search (Chu et al. 2019)

    SpArSe: Sparse Architecture Search for CNNs on Resource-Constrained Microcontrollers (Fedorov et al. 2019)

    EENA: Efficient Evolution of Neural Architecture (Zhu et al. 2019)

    The Evolved Transformer (So et al. 2019)

    Single Path One-Shot Neural Architecture Search with Uniform Sampling (Guo et al. 2019)

    InstaNAS: Instance-aware Neural Architecture Search (Cheng et al. 2019)

    ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware (Cai et al. 2019)

    NAS-Bench-101: Towards Reproducible Neural Architecture Search (Ying et al. 2019)

    Evolutionary Neural AutoML for Deep Learning (Liang et al. 2019)

    Fast, Accurate and Lightweight Super-Resolution with Neural Architecture Search (Chu et al. 2019)

    The Evolved Transformer (So et al. 2019)

    SNAS: Stochastic Neural Architecture Search (Xie et al. 2019)

    NeuNetS: An Automated Synthesis Engine for Neural Network Design (Sood et al. 2019)

    EAT-NAS: Elastic Architecture Transfer for Accelerating Large-scale Neural Architecture Search (Fang et al. 2019)

    Understanding and Simplifying One-Shot Architecture Search (Bender et al. 2018)

    IRLAS: Inverse Reinforcement Learning for Architecture Search (Guo et al. 2018)

    Neural Architecture Search with Bayesian Optimisation and Optimal Transport (Kandasamy et al. 2018)

    Path-Level Network Transformation for Efficient Architecture Search (Cai et al. 2018)

    BlockQNN: Efficient Block-wise Neural Network Architecture Generation (Zhong et al. 2018)

    Stochastic Adaptive Neural Architecture Search for Keyword Spotting (Véniat et al. 2018)

    Task-Driven Convolutional Recurrent Models of the Visual System (Nayebi et al. 2018)

    Neural Architecture Optimization (Luo et al. 2018)

    MnasNet: Platform-Aware Neural Architecture Search for Mobile (Tan et al. 2018)

    Neural Architecture Search: A Survey (Elsken et al. 2018)

    MONAS: Multi-Objective Neural Architecture Search using Reinforcement Learning (Hsu et al. 2018)

    NetAdapt: Platform-Aware Neural Network Adaptation for Mobile Applications (Yang et al. 2018)

    MorphNet: Fast & Simple Resource-Constrained Structure Learning of Deep Networks (Gordon et al. 2018)

    DPP-Net: Device-aware Progressive Search for Pareto-optimal Neural Architectures (Dong et al. 2018)

    Searching Toward Pareto-Optimal Device-Aware Neural Architectures (Cheng et al. 2018)

    Differentiable Architecture Search (Liu et al. 2018)

    Regularized Evolution for Image Classifier Architecture Search (Real et al. 2018)

    Efficient Architecture Search by Network Transformation (Cai et al. 2017)

    Large-Scale Evolution of Image Classifiers (Real et al. 2017)

    Progressive Neural Architecture Search (Liu et al. 2017)

    AdaNet: Adaptive Structural Learning of Artificial Neural Networks (Cortes et al. 2017)

    Learning Transferable Architectures for Scalable Image Recognition (Zoph et al. 2017)

    Designing Neural Network Architectures using Reinforcement Learning (Baker et al. 2016)

    Neural Architecture Search with Reinforcement Learning (Zoph and Le. 2016)

   优化器搜索

    Neural Optimizer Search with Reinforcement Learning (Bello et al. 2017)

 自动添加(AutoAugment)

    Learning Data Augmentation Strategies for Object Detection (Zoph et al. 2019)

    Fast AutoAugment (Lim et al. 2019)

    AutoAugment: Learning Augmentation Policies from Data (Cubuk et al. 2018)

   学会学习/元学习

    Learning to Learn with Gradients (Chelsea Finn PhD disseration 2018)

    On First-Order Meta-Learning Algorithms (OpenAI Reptile by Nichol et al. 2018)

    Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks (MAML by Finn et al. 2017)

    A sample neural attentive meta-learner (Mishra et al. 2017)

    Learning to Learn without Gradient Descent by Gradient Descent (Chen et al. 2016)

    Learning to learn by gradient descent by gradient descent (Andrychowicz et al. 2016)

    Learning to reinforcement learn (Wang et al. 2016)

    RL^2: Fast Reinforcement Learning via Slow Reinforcement Learning (Duan et al. 2016)

 超参数优化

    Google Vizier: A Service for Black-Box Optimization (Golovin et al. 2017)

    Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization (Li et al. 2016)

    Automatic feature selection

    Deep Feature Synthesis: Towards Automating Data Science Endeavors (Kanter et al. 2017)

    ExploreKit: Automatic Feature Generation and Selection (Katz et al. 2016)

模型压缩

    AMC: AutoML for Model Compression and Acceleration on Mobile Devices (He et al. 2018)

工具和开源项目

    ATM: Auto Tune Models: A multi-tenant, multi-data system for automated machine learning (model selection and tuning)

    Adanet: Fast and flexible AutoML with learning guarantees: Tensorflow package for AdaNet

    Microsoft Neural Network Intelligence (NNI): An open source AutoML toolkit for neural architecture search and hyper-parameter tuning

    Dragonfly: An open source python library for scalable Bayesian optimisation

    H2O AutoML: Automatic Machine Learning by H2O.ai

    Kubernetes Katib: hyperparameter Tuning on Kubernetes inspired by Google Vizier

    TransmogrifAI: automated machine learning for structured data by Salesforce

    Advisor: open-source implementation of Google Vizier for hyper parameters tuning

    AutoKeras: AutoML library by Texas A&M University using Bayesian optimization

    AutoSklearn: an automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator

    Ludwig: a toolbox built on top of TensorFlow that allows to train and test deep learning models without the need to write code

    AutoWeka: hyperparameter search for Weka

    automl-gs: Provide an input CSV and a target field to predict, generate a model + code to run it

    SMAC: Sequential Model-based Algorithm Configuration

    Hyperopt-sklearn: hyper-parameter optimization for sklearn

    Spearmint: a software package to perform Bayesian optimization

    TOPT: one of the very first AutoML methods and open-source software packages

    MOE: a global, black box optimization engine for real world metric optimization by Yelp

    Hyperband: open source code for tuning hyperparams with Hyperband

    Optuna: define-by-run hypterparameter optimization framework

    RoBO: a Robust Bayesian Optimization framework

    HpBandSter: a framework for distributed hyperparameter optimization

    HPOlib2: a library for hyperparameter optimization and black box optimization benchmarks

    Hyperopt: distributed Asynchronous Hyperparameter Optimization in Python

    REMBO: Bayesian optimization in high-dimensions via random embedding

    ExploreKit: a framework forautomated feature generation

    FeatureTools: An open source python framework for automated feature engineering

    PocketFlow: use AutoML to do model compression (open sourced by Tencent)

    DEvol (DeepEvolution): a basic proof of concept for genetic architecture search in Keras

商业产品

    Amazon SageMaker

    Google Cloud AutoML

    Google Cloud ML Hyperparameter Turning

    Microsoft Azure Machine Learning Studio

    comet.ml

    SigOpt

经典Post

    A Conversation With Quoc Le: The AI Expert Behind Google AutoML

    fast.ai: An Opinionated Introduction to AutoML and Neural Architecture Search

    Introducing AdaNet: Fast and Flexible AutoML with Learning Guarantees

    Using Evolutionary AutoML to Discover Neural Network Architectures

    Improving Deep Learning Performance with AutoAugment

    AutoML for large scale image classification and object detection

    Using Machine Learning to Discover Neural Network Optimizers

    Using Machine Learning to Explore Neural Network Architecture

公开Presentation

    ICML 2019 Tutorial: Recent Advances in Population-Based Search for Deep Neural Networks by Evolving AI Lab

    Automatic Machine Learning by Frank Hutter and Joaquin Vanschoren

    Advanced Machine Learning Day 3: Neural Architecture Search by Debadeepta Dey (MSR)

    Neural Architecture Search by Quoc Le (Google Brain)

经典书籍

    AUTOML: METHODS, SYSTEMS, CHALLENGES

Competitions, workshops and conferences

    NIPS 2018 3rd AutoML Challenge: AutoML for Lifelong Machine Learning

    AutoML Workshop in ICML

其他资源

    Literature on Neural Architecture Search

    Awesome-AutoML-Papers

落地应用

    AutoML: Automating the design of machine learning models for autonomous driving by Waymo

 

标签:Search,Neural,al,列表,AutoML,Architecture,Learning,自动化,et
From: https://blog.51cto.com/u_13046751/6537791

相关文章

  • 前端Vue自定义简单好用商品分类列表组件 侧边栏商品分类组件
    前端Vue自定义简单好用商品分类列表组件侧边栏商品分类组件 ,下载完整代码请访问uni-app插件市场地址:https://ext.dcloud.net.cn/plugin?id=13148效果图如下:cc-defineCateList使用方法<!--data:商品列表数组[{navtitle:标题shop:[]展示列表}]@click:商品条目点击事......
  • redis之列表和其他操作
    redis之列表1lpush(name,values)2rpush(name,values)表示从右向左操作3lpushx(name,value)4rpushx(name,value)表示从右向左操作5llen(name)6linsert(name,where,refvalue,value))7r.lset(name,index,value)8r.lrem(name,value,num)9lpop(name)10......
  • 鼠标悬浮div或者列表li时,展示出button按钮
    <template><divclass="item"><span><inputtype="checkbox":checked="obj.done"@click="handleCheck(obj.id)"></span><span>{{......
  • 使用自动化和多云:如何简化云原生应用程序的开发和部署
    目录1.引言2.技术原理及概念2.1基本概念解释2.2技术原理介绍2.3相关技术比较3.实现步骤与流程3.1准备工作:环境配置与依赖安装3.2核心模块实现3.3集成与测试4.应用示例与代码实现讲解4.1应用场景介绍4.2应用实例分析4.3核心代码实现5.优化与改进5.1性能优化5.2可扩......
  • Jenkins + Jenkinsfile + Go自动化Pipeline进行部署
    环境准备(因内容繁琐请自行搭建或问度娘)俺也会逐步更新相关文章Jenkins环境jenkins凭据管理Pipeline语法安装钉钉插件并配置钉钉机器人linux服务器go本地目录结构(微服务)服务器文件目录/home/ubuntuJenkinsfile文件文件名为: Jenkinsfilepipeline{agentanyenvironm......
  • POSTGRESQL 自动搜索所有逻辑库中的无用索引自动化脚本实现
    开头还是介绍一下群,如果感兴趣polardb,mongodb,mysql,postgresql,redis等有问题,有需求都可以加群群内有各大数据库行业大咖,CTO,可以解决你的问题。前两天腾出点时间,打算整理一下POSTGRESQL公司的数据库的无用的索引的问题,写了一个SQL通过SQL来获取这些数据库的无用索引,但头......
  • 使用TensorFlow进行自动化测试与部署
    目录标题:《使用TensorFlow进行自动化测试与部署》背景介绍:随着人工智能和机器学习技术的快速发展,TensorFlow成为了一个广泛应用的深度学习框架,被广泛用于构建神经网络、图像识别、自然语言处理等应用。在深度学习应用中,测试和部署非常重要,因为测试和部署是保证应用程序质量......
  • 【React工作记录一百一十八】hook+ant design实现列表的增加和修改(弹出框)
    前言大家好我是歌谣列表页面的新增和编辑是日常开发中遇到比较多的问题如何控制一个页面实现页面的新增和编辑效果演示分析对于以上的页面先渲染出结构<Formname="menu"form={form}labelCol={{sm:......
  • 深度学习-强化学习-图神经网络-自然语言处理等AI课程超级大列表-最新版
        本篇文章内容整理自网络,汇集了大量关于深度学习、强化学习、机器学习、计算机视觉、语音识别、强化学习、图神经网络和自然语言处理相关的各种课程。之前分享过一次,经过一年的更新,又补充了很多2019、2020年的最新资源,补充了一些主题,提供给不间断学习,充实自己的朋友,借下面Hi......
  • 自动化平台总结(httprunner+djangorestframework+python3+Mysql+Vue)【基础构思】
    一、前言最近从零搭建了一个自动化测试平台,虽然不是第一次从零搭建,但是也从来没有进行过这类搭建的总结,还是记录一下,搭建过程中的一些问题和方法。方便以后总结和翻阅二、简介搭建的平台使用的是Python3.6,未来有空可能考虑加个java版本。前端用的Vue,主体是httprunner2.......