首页 > 其他分享 >OpenCV 图像与视频的基础操作

OpenCV 图像与视频的基础操作

时间:2023-06-17 22:36:52浏览次数:39  
标签:视频 窗口 img cv2 OpenCV key 图像



文章目录

  • 引言
  • 创建和显示窗口
  • 如何通过 OpenCV 加载图片问题
  • 加载图片存在的问题
  • 如何通过 openCV 保存图片(保存图片)
  • 如何通过 OpenCV 保存图片
  • 如何利用 OpenCV 从摄像头采集视频(读取视频文件)
  • 如何从多媒体文件中读取视频帧(读取视频文件)
  • 如何将视频数据录制成多媒体文件(视频录制)
  • 代码优化
  • OpenCV 控制鼠标
  • OpenCV 中的 TrackBar 控件
  • 总结


引言

在计算机视觉领域,OpenCV是一款广泛使用的开源库,用于图像处理和计算机视觉任务。当你开始使用OpenCV时,了解如何创建和显示窗口,以及加载和保存图片是至关重要的基础知识。本文将介绍如何使用OpenCV进行这些操作,帮助你更好地掌握图像处理和视觉任务的开发技巧。

创建和显示窗口

创建和显示窗口是图像处理中的重要步骤之一。在OpenCV中,你可以使用一些简单而强大的函数来完成这些操作。让我们来详细了解一下这些函数:

  1. namedWindow() - 创建一个窗口,并指定窗口的名称和类型。
  2. resizeWindow() - 调整窗口的大小,接受窗口名称、宽度和高度作为参数。
  3. imshow() - 在指定的窗口中显示图像,接受窗口名称和要显示的图像作为参数。
  4. waitKey() - 等待键盘输入,接受等待时间(以毫秒为单位)作为参数,0表示无限等待用户的键盘输入。
  5. destroyAllWindows() - 关闭所有窗口。

下面是一个完整的示例代码:

import cv2  
cv2.namedWindow('new', cv2.WINDOW_NORMAL)  
cv2.resizeWindow('new', 640, 480)  
cv2.imshow("new", 0)  
  
key = cv2.waitKey(0)  
if(key == 'q'):  
	exit()  
  
cv2.destroyAllWindows()

OpenCV 图像与视频的基础操作_ide

如何通过 OpenCV 加载图片问题

加载图像是使用 OpenCV 进行图像处理的常见操作之一。在下面的示例中,我们将了解如何使用 OpenCV 加载图像:

  1. im == image - 在代码中,im代表图像对象,通常用于存储加载的图像数据。
  2. imread(path, flag) - 这是一个用于读取图像文件的函数。它接受两个参数:path表示图像文件的路径,flag表示读取图像的方式。常见的flag选项包括:
  • cv2.IMREAD_COLOR:加载彩色图像。
  • cv2.IMREAD_GRAYSCALE:以灰度模式加载图像。
  • cv2.IMREAD_UNCHANGED:加载图像,包括 alpha 通道。

在下面的示例代码中,我们将加载名为 sample.jpg 的图像文件并显示出来:

import cv2

cv2.namedWindow('img', cv2.WINDOW_NORMAL)
img = cv2.imread('sample.jpg')
cv2.imshow('img', img)

key = cv2.waitKey(0)
if key == ord('q'):
    exit()

cv2.destroyAllWindows()

OpenCV 图像与视频的基础操作_opencv_02

加载图片存在的问题

在原始代码中,存在一些问题需要解决,包括语法检测、跨平台路径访问以及程序退出逻辑。下面是对这些问题进行优化的详细解释和示例代码:

存在的问题:

  1. 语法检测有问题:原始代码中的缩进存在问题,影响代码的可读性和执行。
  2. Windows 下访问图片的路径与 Mac/Linux 不同:在不同的操作系统中,访问文件的路径表示方式可能有所差异。需要注意在不同平台上正确指定图像文件的路径。
  3. 程序退出的逻辑有问题:原始代码中使用key == 'q'来检测用户是否按下 ‘q’ 键退出程序,但实际上waitKey()函数返回的是一个整数值。正确的做法是将键码与 'q' 的 ASCII 码值进行比较。

以下是优化后的代码示例:

import cv2

cv2.namedWindow('img', cv2.WINDOW_NORMAL)
img = cv2.imread('sample.jpg')
cv2.imshow('img', img)

key = cv2.waitKey(0)

if key & 0xFF == ord('q'):
    exit()

cv2.destroyAllWindows()

通过以上改进,我们解决了原始代码中存在的语法检测、跨平台路径访问和程序退出逻辑的问题。这样的优化使代码更具可读性和可靠性。

如何通过 openCV 保存图片(保存图片)

如何通过 OpenCV 保存图片

在OpenCV中,可以使用imwrite()函数来保存图片。该函数接受两个参数:要保存的文件名和要保存的图像(以OpenCV中的Mat类型表示)。你可以指定保存的文件名和文件格式(如.jpg、.png等),并将图像数据作为参数传递给imwrite()函数,即可将图像保存到指定的文件中。

  • imwrite(name, img)
  • name,要保存的文件名
  • img,是 Mat 类型
import cv2  
cv2.namedWindow('img', cv2.WINDOW_NORMAL)  
  
img = cv2.imread('sample.jpg')  
cv2.imshow("img", img)  
  
key = cv2.waitKey(0)  
  
if(key & 0xFF == ord('q')):  
	cv2.destroyAllWindows()  
elif(key & 0xFF == ord('s')):  
	cv2.imwrite('sample.png', img) # 改了一下文件格式

改善后的代码:

import cv2  
cv2.namedWindow('img', cv2.WINDOW_NORMAL)  
  
img = cv2.imread('sample.jpg')  
  
while True:  
cv2.imshow("img", img)  
  
key = cv2.waitKey(0)  
  
if(key & 0xFF == ord('q')):  
	break  
elif(key & 0xFF == ord('s')):  
	cv2.imwrite('sample.png', img) # 改了一下文件格式  
else:  
	print(key)  
  
cv2.destroyAllWindows()

如何利用 OpenCV 从摄像头采集视频(读取视频文件)

在许多计算机视觉应用中,从摄像头采集视频是一个常见的任务。OpenCV提供了简单而强大的函数来实现这个目标。下面我们将介绍如何利用OpenCV从摄像头读取视频帧。

  • VideoCapture():用于获取视频设备。它接受一个参数index,表示要使用的视频设备的索引。通常情况下,索引为0表示使用默认的摄像头。
  • cap.read():用于从摄像头读取视频帧。
  • 返回两个值,第一个为状态值,读到帧为 true
  • 第二个值为视频帧
  • cap.release():用于释放VideoCapture对象。在程序结束时,应该调用该函数释放占用的资源。

下面是一个完整的示例代码,展示了如何利用OpenCV从摄像头采集视频并实时显示:

import cv2

# 创建窗口
cv2.namedWindow('video', cv2.WINDOW_NORMAL)
cv2.resizeWindow('video', 640, 480)

# 获取视频设备
cap = cv2.VideoCapture(0)

while True:
    # 从摄像头读视频帧
    ret, frame = cap.read()

    # 将视频帧在窗口中显示
    cv2.imshow('video', frame)

    # 等待键盘时间,如果为q,退出
    key = cv2.waitKey(1)    # 设置1ms,最低为1ms
    if(key & 0xFF == ord('q')):
        break

# 释放 VideoCapture
cap.release()
cv2.destroyAllWindows()

如何从多媒体文件中读取视频帧(读取视频文件)

除了从摄像头采集视频帧,OpenCV还提供了读取视频文件中的视频帧的功能。下面我们将介绍如何使用cv2.VideoCapture()函数从多媒体文件中读取视频帧。

  • cv2.VideoCapture() 从视频文件中读取视频帧

下面是一个完整的示例代码,展示了如何从视频文件中读取视频帧并显示:

import cv2

# 创建窗口
cv2.namedWindow('video', cv2.WINDOW_NORMAL)
cv2.resizeWindow('video', 640, 480)

# 获取视频设备/从视频文件中读取视频帧
cap = cv2.VideoCapture("sample.mp4")

while True:
    # 从摄像头读视频帧
    ret, frame = cap.read()

    # 将视频帧在窗口中显示
    cv2.imshow('video', frame)

    # 等待键盘时间,如果为q,退出
    key = cv2.waitKey(40)    # 设置1ms,最低为1ms
    if(key & 0xFF == ord('q')):
        break

# 释放 VideoCapture
cap.release()
cv2.destroyAllWindows()

如何将视频数据录制成多媒体文件(视频录制)

OpenCV提供了VideoWriter类,可以将视频数据录制成多媒体文件。

  • VideoWriter
  • 参数一为输出文件
  • 参数二为多媒体文件格式(VideoWriter_fourcc
  • 参数三为帧率
  • 参数四为分辨率大小
  • write
  • release

下面是使用VideoWriter类进行视频录制的示例代码:

import cv2

# 创建 VideoWriter 为写多媒体文件
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
vw = cv2.VideoWriter('./out.mp4', fourcc, 25, (1280, 720))   # 分辨率要按照真实摄像头分辨率填写

# 创建窗口
cv2.namedWindow('video', cv2.WINDOW_NORMAL)
cv2.resizeWindow('video', 640, 480)

# 获取视频设备/从视频文件中读取视频帧
cap = cv2.VideoCapture(0)

while True:
    # 从摄像头读视频帧
    ret, frame = cap.read()

    # 将视频帧在窗口中显示
    cv2.imshow('video', frame)

    # 写数据到多媒体文件
    vw.write(frame)

    # 等待键盘时间,如果为q,退出
    key = cv2.waitKey(1)    # 设置1ms,最低为1ms
    if(key & 0xFF == ord('q')):
        break

# 释放 VideoCapture
cap.release()

# 释放VideoWriter
vw.release()

cv2.destroyAllWindows()

代码优化

在下面的代码中,我们对代码进行了优化以解决一些问题:

  • 显示窗口为什么变大了?
  • 使用 isOpened() 判断摄像头是否已打开
  • 采集数据时要判断数据是否获取到了
import cv2

# 创建 VideoWriter 为写多媒体文件
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
vw = cv2.VideoWriter('./out.mp4', fourcc, 25, (1280, 720))   # 分辨率要按照真实摄像头分辨率填写

# 创建窗口
cv2.namedWindow('video', cv2.WINDOW_NORMAL)
cv2.resizeWindow('video', 640, 480)

# 获取视频设备/从视频文件中读取视频帧
cap = cv2.VideoCapture(0)

while cap.isOpened():   # ⭐判断摄像头是否打开
    # 从摄像头读视频帧
    ret, frame = cap.read()

    if ret == True: # ⭐判断是否获取到数据
        # 将视频帧在窗口中显示
        cv2.imshow('video', frame)
        cv2.resizeWindow('video', 640, 480) # ⭐窗口变大了

        # 写数据到多媒体文件
        vw.write(frame)

        # 等待键盘时间,如果为q,退出
        key = cv2.waitKey(1)    # 设置1ms,最低为1ms
        if(key & 0xFF == ord('q')):
            break
    else:
        break

# 释放 VideoCapture
cap.release()

# 释放VideoWriter
vw.release()

cv2.destroyAllWindows()

OpenCV 控制鼠标

下面将了解如何使用 OpenCV 控制鼠标。具体来说,我们将了解如何设置鼠标回调函数,以便在鼠标事件发生时执行特定的操作。

设置鼠标回调函数

  • setMouseCallback(winname, callback, userdata)
  • callback(event, x, y, flags, userdata)
  • event:鼠标移动,按下左键
  • x,y:鼠标左键
  • flags:鼠标键及组合键

下面是一个完整的示例代码,演示了如何设置鼠标回调函数并在窗口中显示鼠标事件的信息:

import cv2
import numpy as np


# 鼠标回调函数
def mouse_callback(event, x, y, flags, userdata):
    print(event, x, y, flags, userdata)

# mouse_callback(1, 100, 100, 16, "666")

# 创建窗口
cv2.namedWindow('mouse', cv2.WINDOW_NORMAL)
cv2.resizeWindow('mouse', 640, 360)

# 设置鼠标回调
cv2.setMouseCallback('mouse', mouse_callback, "123")

# 显示窗口和背景
img = np.zeros((360, 640, 3), np.uint8) # 全黑图片
while True:
    cv2.imshow('mouse', img)
    key = cv2.waitKey(1)
    if key & 0xFF == ord('q'):
        break

cv2.destroyAllWindows()

OpenCV 中的 TrackBar 控件

TrackBar 是 OpenCV 提供的一个图形用户界面控件,用于在窗口中创建滑动条,通过滑动条可以动态调整某个参数的值。下面将介绍如何在 OpenCV 中使用 TrackBar 控件。

OpenCV 图像与视频的基础操作_opencv_03

  • createTrackbar
  • trackbarname,winname
  • value:trackbar 当前值
  • count:最小值为0,最大值为 count
  • callback,userdata
  • getTrackbarPos
  • 输入参数:trackbarname
  • 输入参数:winname
  • 输出:当前值

在下面代码中,我们将创建了一个名为 ‘trackbar’ 的窗口,并在其中创建了三个 TrackBar,分别用于控制红、绿、蓝三个通道的值。每个 TrackBar 的取值范围为 0~255。我们还创建了一个背景图片,其颜色将根据 TrackBar 的值进行实时更新。

import cv2
import numpy as np


def callback():
    pass

# 创建窗口
cv2.namedWindow('trackbar', cv2.WINDOW_NORMAL)

# 创建 trackbar
cv2.createTrackbar('R', 'trackbar', 0, 255, callback)
cv2.createTrackbar('G', 'trackbar', 0, 255, callback)
cv2.createTrackbar('B', 'trackbar', 0, 255, callback)

# 创建一个背景图片
img = np.zeros((480, 640, 3), np.uint8) # 黑色背景

while True:

    # 获取当前 trackbar 的值
    r = cv2.getTrackbarPos('R', 'trackbar')
    g = cv2.getTrackbarPos('G', 'trackbar')
    b = cv2.getTrackbarPos('B', 'trackbar')

    # 改变背景图片颜色
    img[:] = [b, g, r]  # img[:] 表示所有像素
    cv2.imshow('trackbar', img)

    key = cv2.waitKey(10)
    if key & 0xFF == ord('q'):
        break

cv2.destroyAllWindows()

总结

这篇博客简单介绍了 OpenCV 的OpenCV 图像与视频的基础操作,包括窗口创建、图像加载和保存、摄像头视频采集以及多媒体文件录制等内容。同时,还提供了代码优化技巧以及鼠标交互和 TrackBar 控件的应用。通过阅读这篇博客,读者可以全面了解 OpenCV 的功能和用法,掌握图像处理的基本技能。


标签:视频,窗口,img,cv2,OpenCV,key,图像
From: https://blog.51cto.com/techfanyi/6506393

相关文章

  • Windows 下编译 OpenCV 和 OpenCV-contrib
    文章目录导言环境准备源码获取环境获取配置CMake并编译ConfigureGenerate生成项目总结导言在本文中,我们将介绍如何在Windows系统下编译OpenCV和OpenCV-contrib。OpenCV是一个开源的计算机视觉库,它包含了许多图像处理和计算机视觉的功能。而OpenCV-contrib则是一个由社......
  • Hugging News #0616: 有几项非常重要的合作快来围观、最新中文演讲视频回放发布!
    每一周,我们的同事都会向社区的成员们发布一些关于HuggingFace相关的更新,包括我们的产品和平台更新、社区活动、学习资源和内容更新、开源库和模型更新等,我们将其称之为「HuggingNews」,本期HuggingNews有哪些有趣的消息,快来看看吧!重磅更新safetensors将成为保存模型的默......
  • opencv 直方图/ 均衡化
    importcv2importnumpyasnpimportmatplotlib.pyplotasplt#若是画图像plt是RGB的与cv2不同img=cv2.imread('C:/Users/59925/Desktop/pytest/pics/eye.jpg')#把图片读取成灰度图minions-stemplate=cv2.imread('C:/Users/59925/Desktop/pytest/pics/eye.jpg')#把图片读取......
  • UNeXt:基于 MLP 的快速医学图像分割网络
    前言 本文介绍的UNeXt是约翰霍普金斯大学发布的论文。它在早期阶段使用卷积,在潜在空间阶段使用MLP。通过一个标记化的MLP块来标记和投影卷积特征,并使用MLP对表示进行建模。对输入通道进行移位,可以专注于学习局部依赖性。本文转载自DeephubImba仅用于学术分享,若侵权请联系......
  • 图像形态学
    图像形态学细胞计数腐蚀Erosion去掉黏连结构元大小尺寸设置太小可能使黏连无法分开太大可能把细胞整个变成背景形状练习6×63×55×1(竖的)7×1(横的)图像中的裂纹把细胞变成了两个?膨胀要求保持原有物体的大小和形状?开运算先腐蚀......
  • opencv 模板匹配
    -逐个比较像素点之间差异importcv2importnumpyasnpimg=cv2.imread('C:/Users/59925/Desktop/pytest/pics/minions-s.jpg',0)#把图片读取成灰度图template=cv2.imread('C:/Users/59925/Desktop/pytest/pics/eye.jpg',0)#把图片读取成灰度图method='cv2.TM_SQDIFF_NORMED&......
  • DragGAN图像生成原理与实现
    DragGAN图像生成原理与实现DragGAN模型是什么呢1.DragGAN背景介绍2.模型方法2.1算法原理2.1.1MotionSupervision2.1.2点跟踪3.实现部署步骤3.1安装PyTorch3.2安装DragGAN3.3运行DragGANDemo3.4功能介绍项目地址:https://github.com/Zeqiang-Lai/DragGAN论文地址:http......
  • libavcodec视频解码
    一.打开和关闭输入文件和输出文件//io_data.cppstaticFILE*input_file=nullptr;staticFILE*output_file=nullptr;int32_topen_input_output_files(constchar*input_name,constchar*output_name){if(strlen(input_name)==0||strlen(output_name)==0){......
  • 【图像加密】基于双随机实现图像加密解密附matlab代码
    ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。......
  • 基于神经网络的大模型在图像识别中的应用
    目录1.引言2.技术原理及概念3.实现步骤与流程4.示例与应用5.优化与改进6.结论与展望随着深度学习技术的不断发展,特别是在计算机视觉领域,基于神经网络的大模型在图像识别中的应用越来越广泛。这些模型能够在处理大量图像数据的同时,准确地识别出各种物体和场景,取得了令人瞩目......