首页 > 其他分享 >UNeXt:基于 MLP 的快速医学图像分割网络

UNeXt:基于 MLP 的快速医学图像分割网络

时间:2023-06-17 17:45:53浏览次数:50  
标签:教程 标记 卷积 MLP 专栏 图像 UNeXt

前言 本文介绍的UNeXt是约翰霍普金斯大学发布的论文。它在早期阶段使用卷积,在潜在空间阶段使用 MLP。通过一个标记化的 MLP 块来标记和投影卷积特征,并使用 MLP 对表示进行建模。对输入通道进行移位,可以专注于学习局部依赖性。

本文转载自Deephub Imba

仅用于学术分享,若侵权请联系删除

欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结、最新技术跟踪、经典论文解读、CV招聘信息。

CV各大方向专栏与各个部署框架最全教程整理

【CV技术指南】CV全栈指导班、基础入门班、论文指导班 全面上线!!

UNeXt

基本架构

UNeXt 是一种编码器-解码器架构,具有两个阶段:

1、卷积阶段,2、标记化 MLP 阶段。

输入图像通过编码器,前 3 个块是卷积块,接下来的 2 个是标记化 MLP 块。

解码器有 2 个标记化 MLP 块,后跟 3 个卷积块。

每个编码器块使用具有窗口 2×2 的最大池化层将特征分辨率降低 2,每个解码器块使用双线性插值将特征分辨率增加 2。编码器和解码器之间也包含跳过连接。每个块的通道数是一个超参数,表示为 C1 到 C5。在实验中,除非另有说明,否则 C1=32、C2=64、C3=128、C4=160 和 C5=256。

每个卷积块时标准的一个卷积层、一个批量归一化层和 ReLU 激活层。内核大小为 3×3,步长为 1。

带位移的 MLP

conv特征的通道轴线在标记(Tokenized)之前首先移位。这有助于MLP只关注conv特征的某些位置,从而诱导块的局部性。论文作者说,这里与Swin Transformer类似。由于Tokenized MLP块有2个MLP,因此特征在一个块中跨宽度移动,在另一个块中跨高度移动,就像Axial-DeepLab中的轴向注意力一样。这样特征被分割到h个不同的分区,并根据指定的轴移动j=5个位置。

标记化(Tokenized) MLP阶段

首先使用大小为 3 的内核将通道数更改为嵌入维度 E(标记数)。然后将这些标记令牌传递给一个带移位的MLP(跨宽度),其中包含MLP的隐藏维度,默认H=768。

接下来,使用深度卷积层(DWConv)。它有助于对位置信息进行编码,像SegFormer中所建议的,当训练/测试分辨率不同时,它比ViT具有更好的性能。并且它使用更少的参数,可以提高了效率。

激活函数使用GELU,因为在ViT和BERT在使用GELU的情况下表现更好。

特征通过另一个移位的MLP(跨高度)传递,该MLP将维度从H转换为O。

最后还是用了残差连接将原始标记令牌添加到残差。然后使用层归一化(LN),将输出特征传递给下一个块。

损失函数

使用二元交叉熵(BCE)和dice 损失的组合:

结果展示

SOTA对比

UNeXt获得了比所有基线更好的分割性能,计算量比第二的TransUNet少得多。UNeXt在计算复杂度方面明显优于所有其他网络。

swing - unet(图中未显示)有41.35 M个参数,计算也很复杂有11.46 GFLOPs。

作者还实验了MLP-Mixer作为编码器和普通卷积解码器,它只有大约11M个参数,但是分割的性能不是最优的。

定性结果

与其他方法相比,UNeXt产生了具有竞争力的分割预测。

消融实验

当深度减小,仅使用3级架构,也就是说只使用Conv阶段时,参数数量和复杂度显著减少,但性能下降4%。当使用标记化的MLP块时,它可以显着提高性能。

增加通道(UNeXt-L)进一步提高了性能,同时增加了计算开销。减少通道(UNeXt-S)会降低性能(降低幅度并不大),但我们得到了一个非常轻量级的模型。

论文:https://arxiv.org/abs/2203.04967

源代码:https://github.com/jeya-maria-jose/UNeXt-pytorch

 

欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结、最新技术跟踪、经典论文解读、CV招聘信息。

计算机视觉入门1v3辅导班

【技术文档】《从零搭建pytorch模型教程》122页PDF下载

QQ交流群:470899183。群内有大佬负责解答大家的日常学习、科研、代码问题。

其它文章

12篇CVPR 2023 最佳论文候选

ICLR2023 | 扩散生成模型新方法:极度简化,一步生成

显著提升模型精度!巧用 MMRazor 轻量级骨干网络

小内存有救了!Reversible ViT:显存减少15倍,大模型普及曙光初现!

DCSAU-Net | 更深更紧凑注意力U-Net

此「错」并非真的错:从四篇经典论文入手,理解Transformer架构图「错」在何处

CVPR 2023 | 即插即用!SQR:对于训练DETR-family目标检测的探索和思考

CVPR 2023 Highlight | 西湖大学提出一种全新的对比多模态变换范式

ReID专栏(二)多尺度设计与应用

ReID专栏(一) 任务与数据集概述

libtorch教程(三)简单模型搭建

libtorch教程(二)张量的常规操作

libtorch教程(一)开发环境搭建:VS+libtorch和Qt+libtorch

NeRF与三维重建专栏(三)nerf_pl源码部分解读与colmap、cuda算子使用

NeRF与三维重建专栏(二)NeRF原文解读与体渲染物理模型

NeRF与三维重建专栏(一)领域背景、难点与数据集介绍

异常检测专栏(三)传统的异常检测算法——上

异常检测专栏(二):评价指标及常用数据集

异常检测专栏(一)异常检测概述

BEV专栏(二)从BEVFormer看BEV流程(下篇)

BEV专栏(一)从BEVFormer深入探究BEV流程(上篇)

可见光遥感图像目标检测(三)文字场景检测之Arbitrary

可见光遥感目标检测(二)主要难点与研究方法概述

可见光遥感目标检测(一)任务概要介绍

TensorRT教程(三)TensorRT的安装教程

TensorRT教程(二)TensorRT进阶介绍

TensorRT教程(一)初次介绍TensorRT

AI最全资料汇总 | 基础入门、技术前沿、工业应用、部署框架、实战教程学习

计算机视觉入门1v3辅导班

计算机视觉交流群

聊聊计算机视觉入门

标签:教程,标记,卷积,MLP,专栏,图像,UNeXt
From: https://www.cnblogs.com/wxkang/p/17487774.html

相关文章

  • 图像形态学
    图像形态学细胞计数腐蚀Erosion去掉黏连结构元大小尺寸设置太小可能使黏连无法分开太大可能把细胞整个变成背景形状练习6×63×55×1(竖的)7×1(横的)图像中的裂纹把细胞变成了两个?膨胀要求保持原有物体的大小和形状?开运算先腐蚀......
  • DragGAN图像生成原理与实现
    DragGAN图像生成原理与实现DragGAN模型是什么呢1.DragGAN背景介绍2.模型方法2.1算法原理2.1.1MotionSupervision2.1.2点跟踪3.实现部署步骤3.1安装PyTorch3.2安装DragGAN3.3运行DragGANDemo3.4功能介绍项目地址:https://github.com/Zeqiang-Lai/DragGAN论文地址:http......
  • 【图像加密】基于双随机实现图像加密解密附matlab代码
    ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。......
  • 基于神经网络的大模型在图像识别中的应用
    目录1.引言2.技术原理及概念3.实现步骤与流程4.示例与应用5.优化与改进6.结论与展望随着深度学习技术的不断发展,特别是在计算机视觉领域,基于神经网络的大模型在图像识别中的应用越来越广泛。这些模型能够在处理大量图像数据的同时,准确地识别出各种物体和场景,取得了令人瞩目......
  • 【图像压缩】基于小波结合spiht实现图像压缩附matlab代码
    ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。......
  • flutter系列之:做一个图像滤镜
    简介很多时候,我们需要一些特效功能,比如给图片做个滤镜什么的,如果是h5页面,那么我们可以很容易的通过css滤镜来实现这个功能。那么如果在flutter中,如果要实现这样的滤镜功能应该怎么处理呢?一起来看看吧。我们的目标在继续进行之前,我们先来讨论下本章到底要做什么。最终的目标是希......
  • flutter系列之:做一个图像滤镜
    目录简介我们的目标带滤镜的图片打造filter按钮打造可滑动按钮最后要解决的问题简介很多时候,我们需要一些特效功能,比如给图片做个滤镜什么的,如果是h5页面,那么我们可以很容易的通过css滤镜来实现这个功能。那么如果在flutter中,如果要实现这样的滤镜功能应该怎么处理呢?一起来看看......
  • 智能图像处理竟然能做出这种神奇的事
    前言大家都知道,搞论文的时候很多的时候都需要数据来做支撑,对应的我就需要在很多期刊中获取对应的Figure,但是获取很麻烦,就算拍摄出来,放在论文里面效果也不是很好,而且歪七扭八的很碍眼。在这种事情上就很难搞,我苦这件事情好久了,一直也没有一个具体的解决方案,我想要的效果先来展示一下......
  • 基于神经网络的大模型在图像识别中的应用
    目录1.引言2.技术原理及概念3.实现步骤与流程4.示例与应用5.优化与改进6.结论与展望随着深度学习技术的不断发展,特别是在计算机视觉领域,基于神经网络的大模型在图像识别中的应用越来越广泛。这些模型能够在处理大量图像数据的同时,准确地识别出各种物体和场景,取得了令人瞩目......
  • 在数据库开发和测试期间安全地删除克隆和图像
    在这里,我提供了一个PowerShell脚本,您可以使用它来安全地删除所有克隆,然后准备好父图像,以便使用最新版本的数据库刷新所有开发和测试实例。至于回滚过程,此脚本旨在管理删除过程,以确保工作不会丢失。通过将删除脚本与安装脚本相结合,您可以在更新映像时刷新所有克隆,以反映原始数据库中......