首页 > 其他分享 >实验3:OpenFlow协议分析实践

实验3:OpenFlow协议分析实践

时间:2022-09-27 01:11:15浏览次数:51  
标签:struct OpenFlow 端口 实践 header ofp uint16 实验

实验3:OpenFlow协议分析实践

一、实验目的

  1. 能够运用 wireshark 对 OpenFlow 协议数据交互过程进行抓包;
  2. 能够借助包解析工具,分析与解释 OpenFlow协议的数据包交互过程与机制。

二、实验环境

Ubuntu 20.04 Desktop amd64

三、实验要求

(一)基本要求

  1. 搭建下图所示拓扑,完成相关 IP 配置,并实现主机与主机之间的 IP 通信。用抓包软件获取控制器与交换机之间的通信数据。
主机IP地址
h1 192.168.0.101/24
h2 192.168.0.102/24
h3 192.168.0.103/24
h4 192.168.0.104/24

image

image

  1. 查看抓包结果,分析OpenFlow协议中交换机与控制器的消息交互过程,画出相关交互图或流程图。
  2. (1)HELLO
    控制器6633端口(我最高能支持OpenFlow 1.0) ---> 交换机52108端口
    image

    交换机52108端口(我最高能支持OpenFlow 1.5) ---> 控制器6633端口
    image

    于是双方建立连接,并使用OpenFlow 1.0

    (2)FEATURES_REQUEST

      从控制器6633端口到交换机57126端口,请求特征信息。
    image

    (3)SET_CONFIG

      控制器6633端口(请按照我给你的flag和max bytes of packet进行配置) ---> 交换机57126端口
    image

    (4)FEATURES_REPLY

      交换机57126端口(这是我的特征信息,请查收) ---> 控制器6633端口
    image

    (5)PACKET_IN

      交换机52128端口(有数据包进来,请指示)--- 控制器6633端口
    image

    (6)FLOW_MOD

      分析抓取的flow_mod数据包,控制器通过6633端口向交换机57126端口下发流表项,指导数据的转发处理
    image
    (7)PACKET_OUT

      控制器6633端口(请按照我给你的action进行处理) ---> 交换机57126端口
    image

    image

  3. 回答问题:交换机与控制器建立通信时是使用TCP协议还是UDP协议?
  4. 使用TCP协议,如图所示可以看出,拓扑文件中也有写出是使用TCP协议
    image
    image

(二)进阶要求

将抓包基础要求第2步的抓包结果对照OpenFlow源码,了解OpenFlow主要消息类型对应的数据结构定义。

(1)HELLO
image

/* Header on all OpenFlow packets. */
struct ofp_header {
    uint8_t version;    /* OFP_VERSION. */
    uint8_t type;       /* One of the OFPT_ constants. */
    uint16_t length;    /* Length including this ofp_header. */
    uint32_t xid;       /* Transaction id associated with this packet.
                           Replies use the same id as was in the request
                           to facilitate pairing. */
};

(2)FEATURES_REQUEST
image

源码与OFPT_HELLO代码一致(因为ofp_header为所有报文的头)

(3)OFPT_SET_CONFIG
image

/* Switch configuration. */
struct ofp_switch_config {
    struct ofp_header header;
    uint16_t flags;             /* OFPC_* flags. */
    uint16_t miss_send_len;     /* Max bytes of new flow that datapath should
                                   send to the controller. */
};

(4)OFPT_FEATURES_REPLY

image

/* Switch features. */
struct ofp_switch_features {
    struct ofp_header header;
    uint64_t datapath_id;   /* Datapath unique ID.  The lower 48-bits are for
                               a MAC address, while the upper 16-bits are
                               implementer-defined. */

    uint32_t n_buffers;     /* Max packets buffered at once. */

    uint8_t n_tables;       /* Number of tables supported by datapath. */
    uint8_t pad[3];         /* Align to 64-bits. */

    /* Features. */
    uint32_t capabilities;  /* Bitmap of support "ofp_capabilities". */
    uint32_t actions;       /* Bitmap of supported "ofp_action_type"s. */

    /* Port info.*/
    struct ofp_phy_port ports[0];  /* Port definitions.  The number of ports
                                      is inferred from the length field in
                                      the header. */
};

(5)OFPT_PACKET_IN

有两种情况:

交换机查找流表,发现没有匹配条目,但是这种包没有抓到过

enum ofp_packet_in_reason {
    OFPR_NO_MATCH,          /* No matching flow. */
    OFPR_ACTION             /* Action explicitly output to controller. */
};

有匹配条目,对应的action是OUTPUT=CONTROLLER,固定收到向控制器发送包
image

/* Packet received on port (datapath -> controller). */
struct ofp_packet_in {
    struct ofp_header header;
    uint32_t buffer_id;     /* ID assigned by datapath. */
    uint16_t total_len;     /* Full length of frame. */
    uint16_t in_port;       /* Port on which frame was received. */
    uint8_t reason;         /* Reason packet is being sent (one of OFPR_*) */
    uint8_t pad;
    uint8_t data[0];        /* Ethernet frame, halfway through 32-bit word,
                               so the IP header is 32-bit aligned.  The
                               amount of data is inferred from the length
                               field in the header.  Because of padding,
                               offsetof(struct ofp_packet_in, data) ==
                               sizeof(struct ofp_packet_in) - 2. */
};

(6)PACKET_OUT
image

/* Send packet (controller -> datapath). */
struct ofp_packet_out {
    struct ofp_header header;
    uint32_t buffer_id;           /* ID assigned by datapath (-1 if none). */
    uint16_t in_port;             /* Packet's input port (OFPP_NONE if none). */
    uint16_t actions_len;         /* Size of action array in bytes. */
    struct ofp_action_header actions[0]; /* Actions. */
    /* uint8_t data[0]; */        /* Packet data.  The length is inferred
                                     from the length field in the header.
                                     (Only meaningful if buffer_id == -1.) */
};

(7)FLOW_MOD
image

/* Flow setup and teardown (controller -> datapath). */
struct ofp_flow_mod {
    struct ofp_header header;
    struct ofp_match match;      /* Fields to match */
    uint64_t cookie;             /* Opaque controller-issued identifier. */

    /* Flow actions. */
    uint16_t command;             /* One of OFPFC_*. */
    uint16_t idle_timeout;        /* Idle time before discarding (seconds). */
    uint16_t hard_timeout;        /* Max time before discarding (seconds). */
    uint16_t priority;            /* Priority level of flow entry. */
    uint32_t buffer_id;           /* Buffered packet to apply to (or -1).
                                     Not meaningful for OFPFC_DELETE*. */
    uint16_t out_port;            /* For OFPFC_DELETE* commands, require
                                     matching entries to include this as an
                                     output port.  A value of OFPP_NONE
                                     indicates no restriction. */
    uint16_t flags;               /* One of OFPFF_*. */
    struct ofp_action_header actions[0]; /* The action length is inferred
                                            from the length field in the
                                            header. */
};

(三)个人总结

  • 实验过程一开始无法打开wireshark后,仔细看pdf后知道要使用命令sudo wireshark开启。
  • 通过先启动wireshark,再执行python文件,然后执行pingall命令,才能捕获到HELLO数据包。
  • 学会了通过滤器输入“openflow_v1”或“openflow_v4”等进行数据包过滤。
  • 运用 wireshark 对 OpenFlow 协议数据交互过程进行抓包;借助包解析工具,分析与解释 OpenFlow协议的数据包交互过程与机制
  • 将抓包结果对照OpenFlow源码,让我们能够了解OpenFlow主要消息类型对应的数据结构定义
  • 本次实验操作难度并不大,主要时间都花费在寻找各种数据包上面
  • 更加熟练地使用wireshark抓包工具。同时,也利用抓包结果与openflow源码对照学习,了解了openflow主要消息类型对应的数据结构定义

标签:struct,OpenFlow,端口,实践,header,ofp,uint16,实验
From: https://www.cnblogs.com/mianmian7/p/16733095.html

相关文章

  • 实验3:OpenFlow协议分析实践
    基本要求一、拓扑文件二、Wireshark抓包结果1.hello控制器6633端口--->交换机34614端口交换机34614端口--->控制器6633端口2.FeaturesRequest控制器6633端......
  • 实验3:OpenFlow协议分析实践
    一、实验目的1.能够运用wireshark对OpenFlow协议数据交互过程进行抓包;2.能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制。二、实验环境Ubuntu......
  • Python第四章实验报告
    一、实验题目Python第四章实例和实战作业二、实验目的和要求1.熟悉Pycharm的运行环境2.学习并掌握Python的流程控制语句三、主要仪器设备联想小新air15硬件:AMDR75......
  • 实验2:Open vSwitch虚拟交换机实践
    实验2:OpenvSwitch虚拟交换机实践一、实验目的能够对OpenvSwitch进行基本操作;能够通过命令行终端使用OVS命令操作OpenvSwitch交换机,管理流表;能够通过Mininet的Pytho......
  • 实验3:OpenFlow协议分析实践
    一.实验目的1.能够运用wireshark对OpenFlow协议数据交互过程进行抓包;2.能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制。二.实验环境Ubuntu......
  • 实验2:Open vSwitch虚拟交换机实践
    一、实验目的能够对OpenvSwitch进行基本操作;能够通过命令行终端使用OVS命令操作OpenvSwitch交换机,管理流表;能够通过Mininet的Python代码运行OVS命令,控制网络拓扑中......
  • 实验2:Open vSwitch虚拟交换机实践
    实验2:OpenvSwitch虚拟交换机实践一、实验目的1.能够对OpenvSwitch进行基本操作;2.能够通过命令行终端使用OVS命令操作OpenvSwitch交换机,管理流表;3.能够通过Mininet的......
  • 实验2:Open vSwitch虚拟交换机实践
    (一)基本要求a)/home/用户名/学号/lab2/目录下执行ovs-vsctlshow命令、以及p0和p1连通性测试的执行结果截图;b)/home/用户名/学号/lab2/目录下开启MininetCLI并执行p......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的1.能够运用wireshark对OpenFlow协议数据交互过程进行抓包;2.能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与......
  • 实验三: OpenFlow协议分析实战
    实验三:OpenFlow协议分析实战(一)基本要求1.搭建拓扑、IP配置、主机通信1.1搭建拓扑1.2IP配置1.3代码#!/usr/bin/envpythonfrommininet.netimportMinine......