首页 > 其他分享 > 实验三: OpenFlow协议分析实战

实验三: OpenFlow协议分析实战

时间:2022-09-26 23:35:13浏览次数:56  
标签:实战 struct OpenFlow header ofp uint16 实验 net port

实验三: OpenFlow协议分析实战

(一) 基本要求

1.搭建拓扑、IP配置、主机通信

1.1 搭建拓扑

image

1.2 IP配置

image

1.3 代码

#!/usr/bin/env python

from mininet.net import Mininet
from mininet.node import Controller, RemoteController, OVSController
from mininet.node import CPULimitedHost, Host, Node
from mininet.node import OVSKernelSwitch, UserSwitch
from mininet.node import IVSSwitch
from mininet.cli import CLI
from mininet.log import setLogLevel, info
from mininet.link import TCLink, Intf
from subprocess import call

def myNetwork():

    net = Mininet( topo=None,
                   build=False,
                   ipBase='192.168.0.0/24')

    info( '*** Adding controller\n' )
    c0=net.addController(name='c0',
                      controller=Controller,
                      protocol='tcp',
                      port=6633)

    info( '*** Add switches\n')
    s1 = net.addSwitch('s1', cls=OVSKernelSwitch)
    s2 = net.addSwitch('s2', cls=OVSKernelSwitch)

    info( '*** Add hosts\n')
    h1 = net.addHost('h1', cls=Host, ip='192.168.0.101', defaultRoute=None)
    h2 = net.addHost('h2', cls=Host, ip='192.168.0.102', defaultRoute=None)
    h3 = net.addHost('h3', cls=Host, ip='192.168.0.103', defaultRoute=None)
    h4 = net.addHost('h4', cls=Host, ip='192.168.0.104', defaultRoute=None)

    info( '*** Add links\n')
    net.addLink(h1, s1)
    net.addLink(h3, s1)
    net.addLink(s1, s2)
    net.addLink(s2, h4)
    net.addLink(s2, h2)

    info( '*** Starting network\n')
    net.build()
    info( '*** Starting controllers\n')
    for controller in net.controllers:
        controller.start()

    info( '*** Starting switches\n')
    net.get('s1').start([c0])
    net.get('s2').start([c0])

    info( '*** Post configure switches and hosts\n')

    CLI(net)
    net.stop()

if __name__ == '__main__':
    setLogLevel( 'info' )
    myNetwork()

1.4 主机通信

image

2. 抓包

2.1 hello

控制器6633端口(我最高能支持OpenFlow1.0) --> 交换机50654
image

交换机50654端口(我最高能支持OpenFlow1.5) --> 控制器6633端口
image

2.2 Features Request/ Set Coning

控制器端口6633端口(我需要你的特征信息) --> 交换机50654端口
image

控制器6633(请按照我给你的flag和max bytes of packet进行配置) --> 交换机50654端口
image

2.3 Port_Status

当交换机端口发生变化时,告知控制器相应的端口状态
image

2.4 Features Reply

交换机50654端口(这是我的特征信息, 请查收) --> 控制器6633端口
image
物理端口描述列表
image

2.5 Packet_in

image

2.6 Flow_mod

控制器通过6633端口向交换机50654、50656下发流表项, 指导数据的转发处理

image
image

2.7 Packet_out

控制器6633(请按照我给你的action端口进行处理) --> 交换机50654端口
告诉输出到交换机的65531端口
image

3 回答问题及交互图

3.1 回答问题

交换机与控制器建立通信时是使用TCP协议还是UDP协议?

​ 使用的是TCP协议

3.2 交互图

(二) 进阶要求

1. OpenFlow的数据包头具有通用字段,相关数据结构定义如下:

/* Header on all OpenFlow packets. */
struct ofp_header {
    uint8_t version;    /* OFP_VERSION. */
    uint8_t type;       /* One of the OFPT_ constants. */
    uint16_t length;    /* Length including this ofp_header. */
    uint32_t xid;       /* Transaction id associated with this packet.
                           Replies use the same id as was in the request
                           to facilitate pairing. */
};

image

2. OFPT_HELLO

/* OFPT_HELLO.  This message has an empty body, but implementations must
 * ignore any data included in the body, to allow for future extensions. */
struct ofp_hello {
    struct ofp_header header;
};

3. OFPT_FEATURES_REQUEST

struct ofp_phy_port {
    uint16_t port_no;
    uint8_t hw_addr[OFP_ETH_ALEN];
    char name[OFP_MAX_PORT_NAME_LEN]; /* Null-terminated */

    uint32_t config;        /* Bitmap of OFPPC_* flags. */
    uint32_t state;         /* Bitmap of OFPPS_* flags. */

    /* Bitmaps of OFPPF_* that describe features.  All bits zeroed if
     * unsupported or unavailable. */
    uint32_t curr;          /* Current features. */
    uint32_t advertised;    /* Features being advertised by the port. */
    uint32_t supported;     /* Features supported by the port. */
    uint32_t peer;          /* Features advertised by peer. */
};
OFP_ASSERT(sizeof(struct ofp_phy_port) == 48);

/* Switch features. */
struct ofp_switch_features {
    struct ofp_header header;
    uint64_t datapath_id;   /* Datapath unique ID.  The lower 48-bits are for
                               a MAC address, while the upper 16-bits are
                               implementer-defined. */

    uint32_t n_buffers;     /* Max packets buffered at once. */

    uint8_t n_tables;       /* Number of tables supported by datapath. */
    uint8_t pad[3];         /* Align to 64-bits. */

    /* Features. */
    uint32_t capabilities;  /* Bitmap of support "ofp_capabilities". */
    uint32_t actions;       /* Bitmap of supported "ofp_action_type"s. */

    /* Port info.*/
    struct ofp_phy_port ports[0];  /* Port definitions.  The number of ports
                                      is inferred from the length field in
                                      the header. */
};

image

4. OFPT_SET_CONFIG

/* Switch configuration. */
struct ofp_switch_config {
    struct ofp_header header;
    uint16_t flags;             /* OFPC_* flags. */
    uint16_t miss_send_len;     /* Max bytes of new flow that datapath should
                                   send to the controller. */
};

image

5. OFPT_PORT_STATUS

struct ofp_port_status {
    struct ofp_header header;
    uint8_t reason;          /* One of OFPPR_*. */
    uint8_t pad[7];          /* Align to 64-bits. */
    struct ofp_phy_port desc;
};

image

6. OFPT_FLOW_MOD

struct ofp_match {
    uint32_t wildcards;        /* Wildcard fields. */
    uint16_t in_port;          /* Input switch port. */
    uint8_t dl_src[OFP_ETH_ALEN]; /* Ethernet source address. */
    uint8_t dl_dst[OFP_ETH_ALEN]; /* Ethernet destination address. */
    uint16_t dl_vlan;          /* Input VLAN id. */
    uint8_t dl_vlan_pcp;       /* Input VLAN priority. */
    uint8_t pad1[1];           /* Align to 64-bits */
    uint16_t dl_type;          /* Ethernet frame type. */
    uint8_t nw_tos;            /* IP ToS (actually DSCP field, 6 bits). */
    uint8_t nw_proto;          /* IP protocol or lower 8 bits of
                                * ARP opcode. */
    uint8_t pad2[2];           /* Align to 64-bits */
    uint32_t nw_src;           /* IP source address. */
    uint32_t nw_dst;           /* IP destination address. */
    uint16_t tp_src;           /* TCP/UDP source port. */
    uint16_t tp_dst;           /* TCP/UDP destination port. */
};

image

7. OFPT_PACKET_IN

/* Flow setup and teardown (controller -> datapath). */
struct ofp_flow_mod {
    struct ofp_header header;
    struct ofp_match match;      /* Fields to match */
    uint64_t cookie;             /* Opaque controller-issued identifier. */

    /* Flow actions. */
    uint16_t command;             /* One of OFPFC_*. */
    uint16_t idle_timeout;        /* Idle time before discarding (seconds). */
    uint16_t hard_timeout;        /* Max time before discarding (seconds). */
    uint16_t priority;            /* Priority level of flow entry. */
    uint32_t buffer_id;           /* Buffered packet to apply to (or -1).
                                     Not meaningful for OFPFC_DELETE*. */
    uint16_t out_port;            /* For OFPFC_DELETE* commands, require
                                     matching entries to include this as an
                                     output port.  A value of OFPP_NONE
                                     indicates no restriction. */
    uint16_t flags;               /* One of OFPFF_*. */
    struct ofp_action_header actions[0]; /* The action length is inferred
                                            from the length field in the
                                            header. */
};

image

8. OFPT_PACKET_OUT

struct ofp_action_header {
    uint16_t type;                  /* One of OFPAT_*. */
    uint16_t len;                   /* Length of action, including this
                                       header.  This is the length of action,
                                       including any padding to make it
                                       64-bit aligned. */
    uint8_t pad[4];
};
OFP_ASSERT(sizeof(struct ofp_action_header) == 8);

/* Send packet (controller -> datapath). */
struct ofp_packet_out {
    struct ofp_header header;
    uint32_t buffer_id;           /* ID assigned by datapath (-1 if none). */
    uint16_t in_port;             /* Packet's input port (OFPP_NONE if none). */
    uint16_t actions_len;         /* Size of action array in bytes. */
    struct ofp_action_header actions[0]; /* Actions. */
    /* uint8_t data[0]; */        /* Packet data.  The length is inferred
                                     from the length field in the header.
                                     (Only meaningful if buffer_id == -1.) */
};

image

个人总结

本次实验比较简单,锻炼的是对mininet操作和wireshark抓包的使用,使用图形化界面构建拓扑, 设置ip后生成代码,打开wireshark选择any进行抓包预备, 注意这一步要在运行代码前执行,运行生成的python文件后就可以顺利的进行抓包和分析。在实验中,我对于wireshark和mininet的使用有了更多的使用心得,同时对于OpenFlow协议有了一定的概念。

标签:实战,struct,OpenFlow,header,ofp,uint16,实验,net,port
From: https://www.cnblogs.com/wojiuyishui/p/16732965.html

相关文章

  • 实验3:OpenFlow协议分析实践
    (一)基本要求拓扑文件wireshark抓包Hello控制器6633端口(我最高能支持OpenFlow1.0)--->交换机55626端口交换机55626端口(我最高能支持OpenFlow1.5)--->控制器66......
  • 实验3:OpenFlow协议分析实践
    一、基本要求1、拓扑文件#!/usr/bin/envpythonfrommininet.netimportMininetfrommininet.nodeimportController,RemoteController,OVSControllerfrommini......
  • 实验3:OpenFlow协议分析实践
    1.基础要求a)/home/用户名/学号/lab3/目录下的拓扑文件b)wireshark抓包的结果截图和对应的文字说明Hello控制器6633端口(我最高能支持OpenFlow1.0)--->交换机4063......
  • 实验3:OpenFlow协议分析实践
    目录实验3:OpenFlow协议分析实践基本要求1.搭建拓扑,完成相关IP配置2-1.查看抓包结果HelloFeatures_RequestSet_ConigPort_StatusFeatures_ReplyPacket_InPacket_OutFlow_M......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的1.能够运用wireshark对OpenFlow协议数据交互过程进行抓包;2.能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制......
  • Pest24实验部分细节总结
    1.整体实验部分实验应用了四种最先进的深度学习方法,即。两个两阶段检测器,FasterRCNN(Ren等人,2015)和CascadeRCNN,Cai和Vasconcelos,2018),以及两个一阶段检测器,SSD(Liu等人,2015......
  • 实验3:OpenFlow协议分析实践
    (一)基本要求1.搭建下图所示拓扑,完成相关IP配置,并实现主机与主机之间的IP通信。用抓包软件获取控制器与交换机之间的通信数据包。2.查看抓包结果,分析OpenFlow协议中交换机......
  • sdn实验(1)——mininet安装及可视化工具miniedit的使用
    一、实验目的安装mininet及使用miniedit二、实验要求安装虚拟机,逐步配置好环境,并初步使用miniedit完成可视化工具的编辑三、具体步骤1.安装Ubuntu虚拟机,......