首页 > 其他分享 >实验3:OpenFlow协议分析实践

实验3:OpenFlow协议分析实践

时间:2022-09-26 22:55:51浏览次数:70  
标签:OFPT struct OpenFlow 端口 实践 header ofp 实验

实验3:OpenFlow 协议分析实践

一、实验目的

  1. 能够运用 wireshark 对 OpenFlow 协议数据交互过程进行抓包;
  2. 能够借助包解析工具,分析与解释 OpenFlow协议的数据包交互过程与机制。

二、实验环境

Ubuntu 20.04 Desktop amd64

三、实验要求

(一)基本要求

  1. 搭建下图所示拓扑,完成相关 IP 配置,并实现主机与主机之间的 IP 通信。用抓包软件获取控制器与交换机之间的通信数据。

  • 在 Miniedit 构建拓扑

  1. 查看抓包结果,分析OpenFlow协议中交换机与控制器的消息交互过程,画出相关交互图或流程图。
  • OFPT_HELLO

从 6633 端口到 44798 端口,OpenFlow 1.0 协议

从 44798 端口到 6633 端口,OpenFlow 1.5 协议

  • OFPT_FEATURES_REQUEST

从 6633 端口到 44798 端口,OpenFlow 1.0 协议

  • OFPT_SET_CONFIG

从 6633 端口到 44798 端口,OpenFlow 1.0 协议

  • OFPT_PORT_STATUS

从 44798 端口到 6633 端口,OpenFlow 1.0 协议

  • OFPT_FEATURES_REPLY

从 44798 端口到 6633 端口,OpenFlow 1.0 协议

  • OFPT_PACKET_IN

从 44798 端口到 6633 端口,OpenFlow 1.0 协议

  • OFPT_PACKET_OUT

从 6633 端口到 44798 端口,OpenFlow 1.0 协议

  • OFPT_FLOW_MOD

从 6633 端口到 44798 端口,OpenFlow 1.0 协议

相关流程图如下:

  1. 回答问题:交换机与控制器建立通信时是使用TCP协议还是UDP协议?

答:使用TCP协议。

(二)进阶要求

  1. 将抓包基础要求第2步的抓包结果对照OpenFlow源码,了解OpenFlow主要消息类型对应的数据结构定义。
  • OFPT_HELLO
struct ofp_header {
    uint8_t version;    /* OFP_VERSION. */
    uint8_t type;       /* One of the OFPT_ constants. */
    uint16_t length;    /* Length including this ofp_header. */
    uint32_t xid;       /* Transaction id associated with this packet.
                           Replies use the same id as was in the request
                           to facilitate pairing. */
};
struct ofp_hello {
    struct ofp_header header;<details>

  • OFPT_FEATURES_REQUEST

源码与 OFPT_HELLO 类似

  • OFPT_SET_CONFIG

struct ofp_switch_config {
    struct ofp_header header;
    uint16_t flags;             /* OFPC_* flags. */
    uint16_t miss_send_len;     /* Max bytes of new flow that datapath should
                                   send to the controller. */
};

  • OFPT_PORT_STATUS

struct ofp_port_status {
    struct ofp_header header;
    uint8_t reason;          /* One of OFPPR_*. */
    uint8_t pad[7];          /* Align to 64-bits. */
    struct ofp_phy_port desc;
};

  • OFPT_FEATURES_REPLY

struct ofp_switch_features {
    struct ofp_header header;
    uint64_t datapath_id;   /* Datapath unique ID.  The lower 48-bits are for
                               a MAC address, while the upper 16-bits are
                               implementer-defined. */

    uint32_t n_buffers;     /* Max packets buffered at once. */

    uint8_t n_tables;       /* Number of tables supported by datapath. */
    uint8_t pad[3];         /* Align to 64-bits. */

    /* Features. */
    uint32_t capabilities;  /* Bitmap of support "ofp_capabilities". */
    uint32_t actions;       /* Bitmap of supported "ofp_action_type"s. */

    /* Port info.*/
    struct ofp_phy_port ports[0];  /* Port definitions.  The number of ports
                                      is inferred from the length field in
                                      the header. */
};

  • OFPT_PACKET_IN

struct ofp_packet_in {
    struct ofp_header header;
    uint32_t buffer_id;     /* ID assigned by datapath. */
    uint16_t total_len;     /* Full length of frame. */
    uint16_t in_port;       /* Port on which frame was received. */
    uint8_t reason;         /* Reason packet is being sent (one of OFPR_*) */
    uint8_t pad;
    uint8_t data[0];        /* Ethernet frame, halfway through 32-bit word,
                               so the IP header is 32-bit aligned.  The
                               amount of data is inferred from the length
                               field in the header.  Because of padding,
                               offsetof(struct ofp_packet_in, data) ==
                               sizeof(struct ofp_packet_in) - 2. */
};

  • OFPT_PACKET_OUT

struct ofp_packet_out {
    struct ofp_header header;
    uint32_t buffer_id;           /* ID assigned by datapath (-1 if none). */
    uint16_t in_port;             /* Packet's input port (OFPP_NONE if none). */
    uint16_t actions_len;         /* Size of action array in bytes. */
    struct ofp_action_header actions[0]; /* Actions. */
    /* uint8_t data[0]; */        /* Packet data.  The length is inferred
                                     from the length field in the header.
                                     (Only meaningful if buffer_id == -1.) */
};

  • OFPT_FLOW_MOD

struct ofp_flow_mod {
    struct ofp_header header;
    struct ofp_match match;      /* Fields to match */
    uint64_t cookie;             /* Opaque controller-issued identifier. */

    /* Flow actions. */
    uint16_t command;             /* One of OFPFC_*. */
    uint16_t idle_timeout;        /* Idle time before discarding (seconds). */
    uint16_t hard_timeout;        /* Max time before discarding (seconds). */
    uint16_t priority;            /* Priority level of flow entry. */
    uint32_t buffer_id;           /* Buffered packet to apply to (or -1).
                                     Not meaningful for OFPFC_DELETE*. */
    uint16_t out_port;            /* For OFPFC_DELETE* commands, require
                                     matching entries to include this as an
                                     output port.  A value of OFPP_NONE
                                     indicates no restriction. */
    uint16_t flags;               /* One of OFPFF_*. */
    struct ofp_action_header actions[0]; /* The action length is inferred
                                            from the length field in the
                                            header. */
};

四、个人总结

  • 实验难度

本次实验主要是验证性实验,对比之前的实验相对简单。

  • 实验过程遇到的困难及解决办法

1、抓包时找不到HELLO数据包
解决办法:先开启抓包再构建拓扑
2、抓包时找不到控制器发送给交换机的HELLO数据包
解决办法:通过过滤器输入“openflow_v6”

  • 个人感想

学会了通过过滤器输入“openflow_v1”或“openflow_v6”,过滤出OpenFlow v1.0 或 OpenFlow v1.5 的数据报文,同时进一步熟悉了wireshark抓包工具的使用。基本了解了OpenFlow协议中交换机与控制器的消息交互过程,通过查看OpenFlow源码,大致了解了OpenFlow主要消息类型对应的数据结构定义。

标签:OFPT,struct,OpenFlow,端口,实践,header,ofp,实验
From: https://www.cnblogs.com/klay11/p/16732868.html

相关文章

  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的1.能够运用wireshark对OpenFlow协议数据交互过程进行抓包;2.能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制......
  • Pest24实验部分细节总结
    1.整体实验部分实验应用了四种最先进的深度学习方法,即。两个两阶段检测器,FasterRCNN(Ren等人,2015)和CascadeRCNN,Cai和Vasconcelos,2018),以及两个一阶段检测器,SSD(Liu等人,2015......
  • 实验3:OpenFlow协议分析实践
    (一)基本要求1.搭建下图所示拓扑,完成相关IP配置,并实现主机与主机之间的IP通信。用抓包软件获取控制器与交换机之间的通信数据包。2.查看抓包结果,分析OpenFlow协议中交换机......
  • sdn实验(1)——mininet安装及可视化工具miniedit的使用
    一、实验目的安装mininet及使用miniedit二、实验要求安装虚拟机,逐步配置好环境,并初步使用miniedit完成可视化工具的编辑三、具体步骤1.安装Ubuntu虚拟机,......
  • 实验3:OpenFlow协议分析实践
    一、基本要求(1)拓扑文件(2)wireshark抓包结果1.hello控制器6633端口--->交换机33896端口交换机33896端口--->控制器6633端口2.FeaturesRequest控制器6633端......
  • 实验3:OpenFlow协议分析实践
    1.基本要求(1)拓扑文件(2)抓包结果截图helloFeaturesRequest/SetConfigPort_StatusFeaturesReplyPacket_inFlow_modPacket_out(3)交互图(4)回......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制......
  • 实验3:OpenFlow协议分析实践
    一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制。二、实验环境Ubuntu2......
  • 实验3:OpenFlow协议分析实践
    (一)基本要求拓扑文件wireshark抓包的结果OFPT_HELLO控制器6633端口(我最高能支持OpenFlow1.0)--->交换机55692端口交换机55692端口(我最高能支持OpenFlow1.5)-......