首页 > 其他分享 >实验3:OpenFlow协议分析实践

实验3:OpenFlow协议分析实践

时间:2022-09-26 22:46:53浏览次数:41  
标签:struct OpenFlow 端口 实践 header ofp uint16 实验

实验3:OpenFlow协议分析实践

一、实验目的

1.能够运用 wireshark 对 OpenFlow 协议数据交互过程进行抓包;
2.能够借助包解析工具,分析与解释 OpenFlow协议的数据包交互过程与机制。

二、实验环境

Ubuntu 20.04 Desktop amd64

三、实验要求

(一)基本要求

1.搭建下图所示拓扑,完成相关 IP 配置,并实现主机与主机之间的 IP 通信。用抓包软件获取控制器与交换机之间的通信数据。
  • 搭建拓扑

  • 配置相关信息

2.hello

控制器6633端口(我最高能支持OpenFlow 1.0) ---> 交换机38404端口

 

交换机38404端口(我最高能支持OpenFlow 1.5) ---> 控制器6633端口

3.Features Request / Set Conig

控制器6633端口(我需要你的特征信息) ---> 交换机38404端口

 
控制器6633端口(请按照我给你的flag和max bytes of packet进行配置) ---> 交换机38404端口

4.Port_Status

当交换机端口发生变化时,告知控制器相应的端口状态。

5.Features Reply

交换机38404端口(这是我的特征信息,请查收) ---> 控制器6633端口

6.Packet_in

有两种情况:

  • 交换机查找流表,发现没有匹配条目时
  • 有匹配条目但是对应的action是OUTPUT=CONTROLLER时
    交换机38404端口(有数据包进来,请指示)--- 控制器6633端口
7.Packet_out

控制器6633端口(请按照我给你的action进行处理) ---> 交换机38404端口

8.Flow_mod

分析抓取的flow_mod数据包,控制器通过6633端口向交换机38404端口、交换机38404端口下发流表项,指导数据的转发处理

 

9.查看抓包结果,分析OpenFlow协议中交换机与控制器的消息交互过程,画出相关交互图或流程图

10.回答问题:交换机与控制器建立通信时是使用TCP协议还是UDP协议?

是TCP,可以从报文中直接看出

(二)进阶要求

将抓包基础要求第2步的抓包结果对照OpenFlow源码,了解OpenFlow主要消息类型对应的数据结构定义。

1.OpenFlow的数据包头具有通用字段,相关数据结构定义如下:
/* Header on all OpenFlow packets. */
struct ofp_header {
    uint8_t version;    /* OFP_VERSION. */
    uint8_t type;       /* One of the OFPT_ constants. */
    uint16_t length;    /* Length including this ofp_header. */
    uint32_t xid;       /* Transaction id associated with this packet.
                           Replies use the same id as was in the request
                           to facilitate pairing. */
};
OFP_ASSERT(sizeof(struct ofp_header) == 8);
2.hello

 

/* OFPT_HELLO.  This message has an empty body, but implementations must
 * ignore any data included in the body, to allow for future extensions. */
struct ofp_hello {
    struct ofp_header header;
};
3.Features Request


参数源码与hello一致

4. Set Conig

/* Switch configuration. */
struct ofp_switch_config {
    struct ofp_header header;
    uint16_t flags;             /* OFPC_* flags. */
    uint16_t miss_send_len;     /* Max bytes of new flow that datapath should
                                   send to the controller. */
};
5.Port_Status

/* A physical port has changed in the datapath */
struct ofp_port_status {
    struct ofp_header header;
    uint8_t reason;          /* One of OFPPR_*. */
    uint8_t pad[7];          /* Align to 64-bits. */
    struct ofp_phy_port desc;
};
6.Features Reply

/* Switch features. */
struct ofp_switch_features {
    struct ofp_header header;
    uint64_t datapath_id;   /* Datapath unique ID.  The lower 48-bits are for
                               a MAC address, while the upper 16-bits are
                               implementer-defined. */

    uint32_t n_buffers;     /* Max packets buffered at once. */

    uint8_t n_tables;       /* Number of tables supported by datapath. */
    uint8_t pad[3];         /* Align to 64-bits. */

    /* Features. */
    uint32_t capabilities;  /* Bitmap of support "ofp_capabilities". */
    uint32_t actions;       /* Bitmap of supported "ofp_action_type"s. */

    /* Port info.*/
    struct ofp_phy_port ports[0];  /* Port definitions.  The number of ports
                                      is inferred from the length field in
                                      the header. */
};
7.Packet_in
(1)交换机查找流表,发现没有匹配条目时
/* Why is this packet being sent to the controller? */
enum ofp_packet_in_reason {
    OFPR_NO_MATCH,          /* No matching flow. */
    OFPR_ACTION             /* Action explicitly output to controller. */
};
(2)有匹配条目但是对应的action是OUTPUT=CONTROLLER

/* Packet received on port (datapath -> controller). */
struct ofp_packet_in {
    struct ofp_header header;
    uint32_t buffer_id;     /* ID assigned by datapath. */
    uint16_t total_len;     /* Full length of frame. */
    uint16_t in_port;       /* Port on which frame was received. */
    uint8_t reason;         /* Reason packet is being sent (one of OFPR_*) */
    uint8_t pad;
    uint8_t data[0];        /* Ethernet frame, halfway through 32-bit word,
                               so the IP header is 32-bit aligned.  The
                               amount of data is inferred from the length
                               field in the header.  Because of padding,
                               offsetof(struct ofp_packet_in, data) ==
                               sizeof(struct ofp_packet_in) - 2. */
};
8.Packet_out

* Action header that is common to all actions.  The length includes the
 * header and any padding used to make the action 64-bit aligned.
 * NB: The length of an action *must* always be a multiple of eight. */
struct ofp_action_header {
    uint16_t type;                  /* One of OFPAT_*. */
    uint16_t len;                   /* Length of action, including this
                                       header.  This is the length of action,
                                       including any padding to make it
                                       64-bit aligned. */
    uint8_t pad[4];
};
OFP_ASSERT(sizeof(struct ofp_action_header) == 8);

/* Send packet (controller -> datapath). */
struct ofp_packet_out {
    struct ofp_header header;
    uint32_t buffer_id;           /* ID assigned by datapath (-1 if none). */
    uint16_t in_port;             /* Packet's input port (OFPP_NONE if none). */
    uint16_t actions_len;         /* Size of action array in bytes. */
    struct ofp_action_header actions[0]; /* Actions. */
    /* uint8_t data[0]; */        /* Packet data.  The length is inferred
                                     from the length field in the header.
                                     (Only meaningful if buffer_id == -1.) */
};
9.Flow_mod

/* Flow setup and teardown (controller -> datapath). */
struct ofp_flow_mod {
    struct ofp_header header;
    struct ofp_match match;      /* Fields to match */
    uint64_t cookie;             /* Opaque controller-issued identifier. */

    /* Flow actions. */
    uint16_t command;             /* One of OFPFC_*. */
    uint16_t idle_timeout;        /* Idle time before discarding (seconds). */
    uint16_t hard_timeout;        /* Max time before discarding (seconds). */
    uint16_t priority;            /* Priority level of flow entry. */
    uint32_t buffer_id;           /* Buffered packet to apply to (or -1).
                                     Not meaningful for OFPFC_DELETE*. */
    uint16_t out_port;            /* For OFPFC_DELETE* commands, require
                                     matching entries to include this as an
                                     output port.  A value of OFPP_NONE
                                     indicates no restriction. */
    uint16_t flags;               /* One of OFPFF_*. */
    struct ofp_action_header actions[0]; /* The action length is inferred
                                            from the length field in the
                                            header. */
};

(三)个人总结

1.建立可视化拓扑时,需要改变Preferences中的IP Base为192.168.0.0/24
2.抓包时没有出现hello数据包,应该先开启抓包在运行sudo python 文件.py
3.通过过滤器输入“openflow_v4”时,并没有出现对应的数据包,查询后发现支持的版本是“openflow_v6”,让我对OpenFlow有了更深刻的了解。
4.将抓包结果对照OpenFlow源码,更加了解了OpenFlow主要消息类型对应的数据结构定义。

标签:struct,OpenFlow,端口,实践,header,ofp,uint16,实验
From: https://www.cnblogs.com/lemonh/p/16732809.html

相关文章

  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制......
  • Pest24实验部分细节总结
    1.整体实验部分实验应用了四种最先进的深度学习方法,即。两个两阶段检测器,FasterRCNN(Ren等人,2015)和CascadeRCNN,Cai和Vasconcelos,2018),以及两个一阶段检测器,SSD(Liu等人,2015......
  • 实验3:OpenFlow协议分析实践
    (一)基本要求1.搭建下图所示拓扑,完成相关IP配置,并实现主机与主机之间的IP通信。用抓包软件获取控制器与交换机之间的通信数据包。2.查看抓包结果,分析OpenFlow协议中交换机......
  • sdn实验(1)——mininet安装及可视化工具miniedit的使用
    一、实验目的安装mininet及使用miniedit二、实验要求安装虚拟机,逐步配置好环境,并初步使用miniedit完成可视化工具的编辑三、具体步骤1.安装Ubuntu虚拟机,......
  • 实验3:OpenFlow协议分析实践
    一、基本要求(1)拓扑文件(2)wireshark抓包结果1.hello控制器6633端口--->交换机33896端口交换机33896端口--->控制器6633端口2.FeaturesRequest控制器6633端......
  • 实验3:OpenFlow协议分析实践
    1.基本要求(1)拓扑文件(2)抓包结果截图helloFeaturesRequest/SetConfigPort_StatusFeaturesReplyPacket_inFlow_modPacket_out(3)交互图(4)回......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制......
  • 实验3:OpenFlow协议分析实践
    一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制。二、实验环境Ubuntu2......
  • 实验3:OpenFlow协议分析实践
    (一)基本要求拓扑文件wireshark抓包的结果OFPT_HELLO控制器6633端口(我最高能支持OpenFlow1.0)--->交换机55692端口交换机55692端口(我最高能支持OpenFlow1.5)-......
  • 实验3:OpenFlow协议分析实践
    (一)基本要求搭建下图所示拓扑,完成相关IP配置,并实现主机与主机之间的IP通信。用抓包软件获取控制器与交换机之间的通信数据。            ......