首页 > 其他分享 >实验3:OpenFlow协议分析实践

实验3:OpenFlow协议分析实践

时间:2022-09-27 01:11:06浏览次数:54  
标签:struct uint16 OpenFlow 实践 header ofp 交换机 实验

基本要求

一、拓扑文件

二、Wireshark抓包结果

1.hello

控制器6633端口 ---> 交换机34614端口

交换机34614端口 ---> 控制器6633端口

2.Features Request

控制器6633端口(我需要你的特征信息) ---> 交换机34614端口

3.Set Config

控制器6633端口(请按照我给你的flag和max bytes of packet进行配置) ---> 交换机34614端口

4.Port_Status

当交换机端口发生变化时,告知控制器相应的端口状态。

5.Features Reply

交换机端口43614(这是我的特征信息,请查收) ---> 控制器6633端口

6.Packet_In

交换机34614端口(有数据包进来,请指示)--- 控制器6633端口

7.Flow_Mod

8.Packet_Out

三、查看抓包结果,分析OpenFlow协议中交换机与控制器的消息交互过程,画出相关交互图或流程图

四、交换机与控制器建立通信时是使用TCP协议还是UDP协议?

TCP协议

进阶要求

1.hello

struct ofp_header {
    uint8_t version;    /* OFP_VERSION. */
    uint8_t type;       /* One of the OFPT_ constants. */
    uint16_t length;    /* Length including this ofp_header. */
    uint32_t xid;       /* Transaction id associated with this packet.
                           Replies use the same id as was in the request
                           to facilitate pairing. */
};

struct ofp_hello {
    struct ofp_header header;
};

2.Features Request

struct ofp_header {
    uint8_t version;    /* OFP_VERSION. */
    uint8_t type;       /* One of the OFPT_ constants. */
    uint16_t length;    /* Length including this ofp_header. */
    uint32_t xid;       /* Transaction id associated with this packet.
                           Replies use the same id as was in the request
                           to facilitate pairing. */
};

struct ofp_hello {
    struct ofp_header header;
};

3.Set Config

/* Switch configuration. */
struct ofp_switch_config {
    struct ofp_header header;
    uint16_t flags;             /* OFPC_* flags. */
    uint16_t miss_send_len;     /* Max bytes of new flow that datapath should
                                   send to the controller. */
};

4.Port_Status

/* A physical port has changed in the datapath */
struct ofp_port_status {
    struct ofp_header header;
    uint8_t reason;          /* One of OFPPR_*. */
    uint8_t pad[7];          /* Align to 64-bits. */
    struct ofp_phy_port desc;
};

5.Features Reply

struct ofp_switch_features {
    struct ofp_header header;
    uint64_t datapath_id;   /* Datapath unique ID.  The lower 48-bits are for
                               a MAC address, while the upper 16-bits are
                               implementer-defined. */

    uint32_t n_buffers;     /* Max packets buffered at once. */

    uint8_t n_tables;       /* Number of tables supported by datapath. */
    uint8_t pad[3];         /* Align to 64-bits. */

    /* Features. */
    uint32_t capabilities;  /* Bitmap of support "ofp_capabilities". */
    uint32_t actions;       /* Bitmap of supported "ofp_action_type"s. */

    /* Port info.*/
    struct ofp_phy_port ports[0];  /* Port definitions.  The number of ports
                                      is inferred from the length field in
                                      the header. */
};
/* Description of a physical port */
struct ofp_phy_port {
    uint16_t port_no;
    uint8_t hw_addr[OFP_ETH_ALEN];
    char name[OFP_MAX_PORT_NAME_LEN]; /* Null-terminated */

    uint32_t config;        /* Bitmap of OFPPC_* flags. */
    uint32_t state;         /* Bitmap of OFPPS_* flags. */

    /* Bitmaps of OFPPF_* that describe features.  All bits zeroed if
     * unsupported or unavailable. */
    uint32_t curr;          /* Current features. */
    uint32_t advertised;    /* Features being advertised by the port. */
    uint32_t supported;     /* Features supported by the port. */
    uint32_t peer;          /* Features advertised by peer. */
};

6.Packet_In

/* Why is this packet being sent to the controller? */
enum ofp_packet_in_reason {
    OFPR_NO_MATCH,          /* No matching flow. */
    OFPR_ACTION             /* Action explicitly output to controller. */
};

/* Packet received on port (datapath -> controller). */
struct ofp_packet_in {
    struct ofp_header header;
    uint32_t buffer_id;     /* ID assigned by datapath. */
    uint16_t total_len;     /* Full length of frame. */
    uint16_t in_port;       /* Port on which frame was received. */
    uint8_t reason;         /* Reason packet is being sent (one of OFPR_*) */
    uint8_t pad;
    uint8_t data[0];        /* Ethernet frame, halfway through 32-bit word,
                               so the IP header is 32-bit aligned.  The
                               amount of data is inferred from the length
                               field in the header.  Because of padding,
                               offsetof(struct ofp_packet_in, data) ==
                               sizeof(struct ofp_packet_in) - 2. */
};

7.Flow_Mod

struct ofp_flow_mod {
    struct ofp_header header;
    struct ofp_match match;      /* Fields to match */
    uint64_t cookie;             /* Opaque controller-issued identifier. */

    /* Flow actions. */
    uint16_t command;             /* One of OFPFC_*. */
    uint16_t idle_timeout;        /* Idle time before discarding (seconds). */
    uint16_t hard_timeout;        /* Max time before discarding (seconds). */
    uint16_t priority;            /* Priority level of flow entry. */
    uint32_t buffer_id;           /* Buffered packet to apply to (or -1).
                                     Not meaningful for OFPFC_DELETE*. */
    uint16_t out_port;            /* For OFPFC_DELETE* commands, require
                                     matching entries to include this as an
                                     output port.  A value of OFPP_NONE
                                     indicates no restriction. */
    uint16_t flags;               /* One of OFPFF_*. */
    struct ofp_action_header actions[0]; /* The action length is inferred
                                            from the length field in the
                                            header. */
};
struct ofp_action_header {
    uint16_t type;                  /* One of OFPAT_*. */
    uint16_t len;                   /* Length of action, including this
                                       header.  This is the length of action,
                                       including any padding to make it
                                       64-bit aligned. */
    uint8_t pad[4];
};

8.Packet_Out

/* Send packet (controller -> datapath). */
struct ofp_packet_out {
    struct ofp_header header;
    uint32_t buffer_id;           /* ID assigned by datapath (-1 if none). */
    uint16_t in_port;             /* Packet's input port (OFPP_NONE if none). */
    uint16_t actions_len;         /* Size of action array in bytes. */
    struct ofp_action_header actions[0]; /* Actions. */
    /* uint8_t data[0]; */        /* Packet data.  The length is inferred
                                     from the length field in the header.
                                     (Only meaningful if buffer_id == -1.) */
};

个人总结

这次实验其实没有需要操作的地方,更多的是对于OpenFlow协议的分析,通过Wireshark对OpenFlow 协议数据交互过程进行抓包,从而能够理解与分析 OpenFlow协议的数据包交互过程与机制。

在OpenFlow1.3协议的情况下,控制器与OpenFlow交换机的消息完整交互流程如下:
1、 控制器与OpenFlow交换机通过TCP“三次握手”,建立有效的连接。其中,控制器一端的端口号为6633。
2、 控制器与OpenFlow交换机之间相互发送Hello消息,用于协商双方的OpenFlow版本号。在双方支持的最高版本号不一致的情况下,协商的结果将以较低的OpenFlow版本为准。
3、 控制器向OpenFlow交换机发送Features Request消息,请求OpenFlow交换机上传自己的详细参数。OpenFlow交换机收到请求后,向控制器发送Features Reply消息,详细汇报自身参数,包括支持的buffer数目、流表数以及Actions等。
4、 控制器通过Set Config消息下发配置参数,然后通过Get config Request消息请求OpenFlow交换机上传修改后的配置信息。OpenFlow交换机通过Get config Reply消息向控制器发送当前的配置信息。
5、 控制器与OpenFlow交换机之间发送Packet_out、Packet_in消息,通过Packet_out中内置的LLDP包,进行网络拓扑的探测。
6、 控制器与OpenFlow交换机之间通过发送Multipart Request、Mutipart Reply消息,控制器能获取OpenFlow交换机的状态信息,包括流的信息、端口信息等。
7、 控制器与OpenFlow交换机之间通过发送Echo Request、Echo Reply消息,保证二者之间存在有效连接,避免失联。

遇到过这样的问题:就是一开始找不到 FLOW_MOD ,后来通过在 CLI 中执行 pingall 命令后,便能够找到了。

标签:struct,uint16,OpenFlow,实践,header,ofp,交换机,实验
From: https://www.cnblogs.com/pan-jinfeng/p/16733120.html

相关文章

  • 实验3:OpenFlow协议分析实践
    一、实验目的1.能够运用wireshark对OpenFlow协议数据交互过程进行抓包;2.能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制。二、实验环境Ubuntu......
  • Python第四章实验报告
    一、实验题目Python第四章实例和实战作业二、实验目的和要求1.熟悉Pycharm的运行环境2.学习并掌握Python的流程控制语句三、主要仪器设备联想小新air15硬件:AMDR75......
  • 实验2:Open vSwitch虚拟交换机实践
    实验2:OpenvSwitch虚拟交换机实践一、实验目的能够对OpenvSwitch进行基本操作;能够通过命令行终端使用OVS命令操作OpenvSwitch交换机,管理流表;能够通过Mininet的Pytho......
  • 实验3:OpenFlow协议分析实践
    一.实验目的1.能够运用wireshark对OpenFlow协议数据交互过程进行抓包;2.能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制。二.实验环境Ubuntu......
  • 实验2:Open vSwitch虚拟交换机实践
    一、实验目的能够对OpenvSwitch进行基本操作;能够通过命令行终端使用OVS命令操作OpenvSwitch交换机,管理流表;能够通过Mininet的Python代码运行OVS命令,控制网络拓扑中......
  • 实验2:Open vSwitch虚拟交换机实践
    实验2:OpenvSwitch虚拟交换机实践一、实验目的1.能够对OpenvSwitch进行基本操作;2.能够通过命令行终端使用OVS命令操作OpenvSwitch交换机,管理流表;3.能够通过Mininet的......
  • 实验2:Open vSwitch虚拟交换机实践
    (一)基本要求a)/home/用户名/学号/lab2/目录下执行ovs-vsctlshow命令、以及p0和p1连通性测试的执行结果截图;b)/home/用户名/学号/lab2/目录下开启MininetCLI并执行p......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的1.能够运用wireshark对OpenFlow协议数据交互过程进行抓包;2.能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与......
  • 实验三: OpenFlow协议分析实战
    实验三:OpenFlow协议分析实战(一)基本要求1.搭建拓扑、IP配置、主机通信1.1搭建拓扑1.2IP配置1.3代码#!/usr/bin/envpythonfrommininet.netimportMinine......
  • 实验3:OpenFlow协议分析实践
    (一)基本要求拓扑文件wireshark抓包Hello控制器6633端口(我最高能支持OpenFlow1.0)--->交换机55626端口交换机55626端口(我最高能支持OpenFlow1.5)--->控制器66......