首页 > 其他分享 >田渊栋新作:打开1层Transformer黑盒,注意力机制没那么神秘

田渊栋新作:打开1层Transformer黑盒,注意力机制没那么神秘

时间:2023-06-13 15:45:44浏览次数:49  
标签:Transformer 黑盒 训练 田渊栋 模型 token 专栏 注意力

前言 AI理论再进一步,破解ChatGPT指日可待?

本文转载自新智元

仅用于学术分享,若侵权请联系删除

欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结、最新技术跟踪、经典论文解读、CV招聘信息。

CV各大方向专栏与各个部署框架最全教程整理

【CV技术指南】CV全栈指导班、基础入门班、论文指导班 全面上线!!

Transformer架构已经横扫了包括自然语言处理、计算机视觉、语音、多模态等多个领域,不过目前只是实验效果非常惊艳,对Transformer工作原理的相关研究仍然十分有限。

其中最大谜团在于,Transformer为什么仅依靠一个「简单的预测损失」就能从梯度训练动态(gradient training dynamics)中涌现出高效的表征?

最近田渊栋博士公布了团队的最新研究成果,以数学严格方式,分析了1层Transformer(一个自注意力层加一个解码器层)在下一个token预测任务上的SGD训练动态。

论文链接:https://arxiv.org/abs/2305.16380

这篇论文打开了自注意力层如何组合输入token动态过程的黑盒子,并揭示了潜在的归纳偏见的性质。

具体来说,在没有位置编码、长输入序列、以及解码器层比自注意力层学习更快的假设下,研究人员证明了自注意力就是一个判别式扫描算法(discriminative scanning algorithm):

从均匀分布的注意力(uniform attention)开始,对于要预测的特定下一个token,模型逐渐关注不同的key token,而较少关注那些出现在多个next token窗口中的常见token

对于不同的token,模型会逐渐降低注意力权重,遵循训练集中的key token和query token之间从低到高共现的顺序。

有趣的是,这个过程不会导致赢家通吃,而是由两层学习率控制的相变而减速,最后变成(几乎)固定的token组合,在合成和真实世界的数据上也验证了这种动态。

田渊栋博士是Meta人工智能研究院研究员、研究经理,围棋AI项目负责人,其研究方向为深度增强学习及其在游戏中的应用,以及深度学习模型的理论分析。先后于2005年及2008年获得上海交通大学本硕学位,2013年获得美国卡耐基梅隆大学机器人研究所博士学位。

曾获得2013年国际计算机视觉大会(ICCV)马尔奖提名(Marr Prize Honorable Mentions),ICML2021杰出论文荣誉提名奖。

曾在博士毕业后发布《博士五年总结》系列,从研究方向选择、阅读积累、时间管理、工作态度、收入和可持续的职业发展等方面对博士生涯总结心得和体会。

揭秘1层Transformer

基于Transformer架构的预训练模型通常只包括非常简单的监督任务,比如预测下一个单词、填空等,但却可以为下游任务提供非常丰富的表征,实在是令人费解。

之前的工作虽然已经证明了Transformer本质上就是一个通用近似器(universal approximator),但之前常用的机器学习模型,比如kNN、核SVM、多层感知机等其实也是通用近似器,这种理论无法解释这两类模型在性能上的巨大差距。

研究人员认为,了解Transformer的训练动态(training dynamics)是很重要的,也就是说,在训练过程中,可学习参数是如何随时间变化的。

文章首先以严谨数学定义的方式,形式化描述了1层无位置编码Transformer的SGD在下一个token预测(GPT系列模型常用的训练范式)上的训练动态。

1层的Transformer包含一个softmax自注意力层和预测下一个token的解码器层。

在假设序列很长,而且解码器的学习速度比自注意力层快的情况下,证明了训练期间自注意力的动态行为:

1. 频率偏差Frequency Bias

模型会逐渐关注那些与query token大量共现的key token,而对那些共现较少的token降低注意力。

2. 判别偏差Discrimitive Bias

模型更关注那些在下一个要预测的token中唯一出现的独特token,而对那些在多个下一个token中出现的通用token失去兴趣。

这两个特性表明,自注意力隐式地运行着一种判别式扫描(discriminative scanning)的算法,并存在归纳偏差(inductive bias),即偏向于经常与query token共同出现的独特的key token

此外,虽然自注意力层在训练过程中趋向于变得更加稀疏,但正如频率偏差所暗示的,模型因为训练动态中的相变(phase transition),所以不会崩溃为独热(one hot)。

学习的最后阶段并没有收敛到任何梯度为零的鞍点,而是进入了一个注意力变化缓慢的区域(即随时间变化的对数),并出现参数冻结和学会(learned)。

研究结果进一步表明,相变的开始是由学习率控制的:大的学习率会产生稀疏的注意力模式,而在固定的自注意力学习率下,大的解码器学习率会导致更快的相变和密集的注意力模式。

研究人员将工作中发现的SGD动态命名为扫描(scan)和snap:

扫描阶段:自注意力集中在key tokens上,即不同的、经常与下一个预测token同时出现的token;其他所有token的注意力都下降。

snap阶段:注意力全中几乎冻结,token组合固定。

这一现象在简单的真实世界数据实验中也得到验证,使用SGD在WikiText上训练的1层和3层Transformer的最低自注意力层进行观察,可以发现即使在整个训练过程中学习率保持不变,注意力也会在训练过程中的某一时刻冻结,并变得稀疏。

参考资料:https://arxiv.org/abs/2305.16380

 

欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结、最新技术跟踪、经典论文解读、CV招聘信息。

计算机视觉入门1v3辅导班

【技术文档】《从零搭建pytorch模型教程》122页PDF下载

QQ交流群:470899183。群内有大佬负责解答大家的日常学习、科研、代码问题。

其它文章

ICLR 2023 | RevCol:可逆的多 column 网络,大模型架构设计新范式

CVPR 2023 | 即插即用的注意力模块 HAT: 激活更多有用的像素助力low-level任务显著涨点!

ICML 2023 | 轻量级视觉Transformer (ViT) 的预训练实践手册

CVPR 2023 | 旷视研究院入选论文亮点解读

CVPR 2023 | 神经网络超体?新国立LV lab提出全新网络克隆技术

即插即用系列 | 高效多尺度注意力模块EMA成为YOLOv5改进的小帮手

即插即用系列 | Meta 新作 MMViT: 基于交叉注意力机制的多尺度和多视角编码神经网络架构

全新YOLO模型YOLOCS来啦 | 面面俱到地改进YOLOv5的Backbone/Neck/Head

6G显存玩转130亿参数大模型,仅需13行命令,RTX2060用户发来贺电

PEFT:缓解大型预训练模型训练成本,实现高效迁移学习

ReID专栏(二)多尺度设计与应用

ReID专栏(一) 任务与数据集概述

libtorch教程(三)简单模型搭建

libtorch教程(二)张量的常规操作

libtorch教程(一)开发环境搭建:VS+libtorch和Qt+libtorch

NeRF与三维重建专栏(三)nerf_pl源码部分解读与colmap、cuda算子使用

NeRF与三维重建专栏(二)NeRF原文解读与体渲染物理模型

NeRF与三维重建专栏(一)领域背景、难点与数据集介绍

异常检测专栏(三)传统的异常检测算法——上

异常检测专栏(二):评价指标及常用数据集

异常检测专栏(一)异常检测概述

BEV专栏(二)从BEVFormer看BEV流程(下篇)

BEV专栏(一)从BEVFormer深入探究BEV流程(上篇)

可见光遥感图像目标检测(三)文字场景检测之Arbitrary

可见光遥感目标检测(二)主要难点与研究方法概述

可见光遥感目标检测(一)任务概要介绍

TensorRT教程(三)TensorRT的安装教程

TensorRT教程(二)TensorRT进阶介绍

TensorRT教程(一)初次介绍TensorRT

AI最全资料汇总 | 基础入门、技术前沿、工业应用、部署框架、实战教程学习

计算机视觉入门1v3辅导班

计算机视觉交流群

聊聊计算机视觉入门

标签:Transformer,黑盒,训练,田渊栋,模型,token,专栏,注意力
From: https://www.cnblogs.com/wxkang/p/17477730.html

相关文章

  • Transformer架构:革命性的深度学习模型概述
    Transformer架构是一种革命性的深度学习模型,由Vaswani等人在2017年的论文《AttentionisAllYouNeed》中提出。它在自然语言处理(NLP)和其他序列到序列(seq2seq)任务中取得了显著的突破,成为目前最受关注和广泛应用的模型之一。背景与动机在传统的序列模型中,如循环神经网络(RNN)和卷......
  • 在Transformers 中使用约束波束搜索引导文本生成
    引言本文假设读者已经熟悉文本生成领域波束搜索相关的背景知识,具体可参见博文如何生成文本:通过Transformers用不同的解码方法生成文本。与普通的波束搜索不同,约束波束搜索允许我们控制所生成的文本。这很有用,因为有时我们确切地知道输出中需要包含什么。例如,在机器翻译任......
  • [重读经典论文] Swin-Transformer
    参考博客:Swin-Transformer网络结构详解参考视频:12.1Swin-Transformer网络结构详解使用了类似卷积神经网络中的层次化构建方法(Hierarchicalfeaturemaps),比如特征图尺寸中有对图像下采样4倍的,8倍的以及16倍的,这样的backbone有助于在此基础上构建目标检测,实例分割等任务。使用......
  • 【论文阅读】Pyramid Vision Transformer:A Versatile Backbone for Dense Prediction
    ......
  • 【论文阅读】CvT:Introducing Convolutions to Vision Transformers
    ......
  • 【论文阅读】Uformer:A General U-Shaped Transformer for Image Restoration
    ......
  • Google | 突破瓶颈,打造更强大的Transformer
    作者:苏剑林前言《AttentionisAllYouNeed》一文发布后,基于Multi-HeadAttention的Transformer模型开始流行起来,而去年发布的BERT模型更是将Transformer模型的热度推上了又一个高峰。当然,技术的探索是无止境的,改进的工作也相继涌现:有改进预训练任务的,比如XLNET的PLM、ALBERT的SO......
  • 黑盒测试在软件测试中的应用和实践
    黑盒测试是软件测试中常用的一种测试方法,它对于测试人员来说具有很强的实用性。本文将介绍黑盒测试在软件测试中的应用和实践。一、什么是黑盒测试黑盒测试也称为功能测试,它是一种测试方法,不考虑程序内部结构,只关注输入输出以及程序的功能是否满足需求。黑盒测试的目的是验证程序是......
  • 编码器 | 基于 Transformers 的编码器-解码器模型
    基于transformer的编码器-解码器模型是表征学习和模型架构这两个领域多年研究成果的结晶。本文简要介绍了神经编码器-解码器模型的历史,更多背景知识,建议读者阅读由SebastionRuder撰写的这篇精彩博文。此外,建议读者对自注意力(self-attention)架构有一个基本了解,可以......
  • Transformer结构及其应用详解——GPT、BERT、MT-DNN、GPT-2
    前言 本文首先详细介绍Transformer的基本结构,然后再通过GPT、BERT、MT-DNN以及GPT-2等基于Transformer的知名应用工作的介绍并附上GitHub链接,看看Transformer是如何在各个著名的模型中大显神威的。本文转载自新智元仅用于学术分享,若侵权请联系删除欢迎关注公众号CV技术指南,专......