首页 > 其他分享 >【论文阅读】CvT:Introducing Convolutions to Vision Transformers

【论文阅读】CvT:Introducing Convolutions to Vision Transformers

时间:2023-06-10 11:55:33浏览次数:53  
标签:Introducing Transformer Transformers 映射 卷积 CvT Token ViT 引入

标签:Introducing,Transformer,Transformers,映射,卷积,CvT,Token,ViT,引入
From: https://www.cnblogs.com/whp135/p/17471022.html

相关文章

  • 【面试】2023CVTE C++软开实习
    2023CVTEC++软开实习一面总结记录面试官看头像挺年轻的,不过他没有开摄像头,不能一睹芳容哈哈哈哈,面试过程中也很和蔼,“噢噢,了解~”是我听到最多的;总共50分钟左右,前二十分钟自我介绍+拷打项目,后面拷打基础,没有敲代码环节;第一次面试,一开始很紧张,后面说着话就又感觉没什么了,还是......
  • 编码器 | 基于 Transformers 的编码器-解码器模型
    基于transformer的编码器-解码器模型是表征学习和模型架构这两个领域多年研究成果的结晶。本文简要介绍了神经编码器-解码器模型的历史,更多背景知识,建议读者阅读由SebastionRuder撰写的这篇精彩博文。此外,建议读者对自注意力(self-attention)架构有一个基本了解,可以......
  • Hugging News #0602: Transformers Agents 介绍、大语言模型排行榜发布!
    每一周,我们的同事都会向社区的成员们发布一些关于HuggingFace相关的更新,包括我们的产品和平台更新、社区活动、学习资源和内容更新、开源库和模型更新等,我们将其称之为「HuggingNews」,本期HuggingNews有哪些有趣的消息,快来看看吧!重磅更新TransformersAgents发布,通过自......
  • transformers入门使用
    transformers入门使用HuggingFace是一个开源社区,它提供了先进的NLP模型,数据集,以及其他工具。模型:https://huggingface.co/models数据集:https://huggingface.co/datasets主要的模型自然回归:GPT2,Trasnformer-XL,XLNet自编码:BERT,ALBERT,ROBERTa,ELECTRASto......
  • 背景 | 基于 Transformers 的编码器-解码器模型
    !pipinstalltransformers==4.2.1!pipinstallsentencepiece==0.1.95Vaswani等人在其名作Attentionisallyouneed中首创了基于transformer的编码器-解码器模型,如今已成为自然语言处理(naturallanguageprocessing,NLP)领域编码器-解码器架构的事实标准。最近基......
  • End-to-End Object Detection with Transformers论文阅读笔记
    摘要作者提出了一种新的基于Transformer的目标检测模型DETR,将检测视为集合预测问题,无需进行nms以及anchorgeneration等操作。同时,对模型进行简单的修改就可以应用到全景分割任务中。方法ObjectdetectionsetpredictionlossDETR给出的是N个预测,N为预先设定的远大于GT目标框......
  • Hugging Face推出Transformers Agents
    来源:GitHubDailyHuggingFace,作为AI开源圈最为知名的「网红」创业公司,成立仅几年,便在GitHub开源了诸多实用开源项目,受到了不少开发者的赞赏。其中影响力最大的,也被很多人称为初代GPT的Transformers,截至今天,GitHubStar累积将近10万。这几年,在HuggingFace平台上面......
  • Transformers回顾 :从BERT到GPT4
    人工智能已成为近年来最受关注的话题之一,由于神经网络的发展,曾经被认为纯粹是科幻小说中的服务现在正在成为现实。从对话代理到媒体内容生成,人工智能正在改变我们与技术互动的方式。特别是机器学习(ML)模型在自然语言处理(NLP)领域取得了重大进展。一个关键的突破是引入了“自......
  • transformers在ctr中的应用
    文章目录1.背景2.相关论文解析2.1《AutoInt:AutomaticFeatureInteractionLearningviaSelf-AttentiveNeuralNetworks》2.1.1论文贡献2.1.2模型结构2.1.2.1输入2.1.2.2注意力机制层2.1.3实验结果2.2《BehaviorSequenceTransformerforE-commerceRecommendationin......
  • An Image Is Worth 16x16 Words: Transformers For Image Recognition At Scale
    模型如下图所示:将H×W×C的图像reshape成了N×(P2×C),其中(H,W)是图像的原始分辨率,C是通道数,(P,P)是每个图像块的分辨率,N=H×W/P2为图像块的数量,将一个图像块使用可学习的线性层映射到维度为D的隐藏向量,如式(1)所示,线性映射的输出称为patchembeddings.在patchembeddin......