def make_layer(block, n_layers): layers = [] for _ in range(n_layers): layers.append(block()) return nn.Sequential(*layers) class ResidualDenseBlock_5C(nn.Module): def __init__(self, nf=64, gc=32, bias=True): super(ResidualDenseBlock_5C, self).__init__() # gc: growth channel, i.e. intermediate channels self.conv1 = nn.Conv2d(nf, gc, 3, 1, 1, bias=bias) self.conv2 = nn.Conv2d(nf + gc, gc, 3, 1, 1, bias=bias) self.conv3 = nn.Conv2d(nf + 2 * gc, gc, 3, 1, 1, bias=bias) self.conv4 = nn.Conv2d(nf + 3 * gc, gc, 3, 1, 1, bias=bias) self.conv5 = nn.Conv2d(nf + 4 * gc, nf, 3, 1, 1, bias=bias) self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) # initialization # mutil.initialize_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1) def forward(self, x): x1 = self.lrelu(self.conv1(x)) x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1))) x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1))) x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1))) x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1)) return x5 * 0.2 + x class RRDB(nn.Module): '''Residual in Residual Dense Block''' def __init__(self, nf, gc=32): super(RRDB, self).__init__() self.RDB1 = ResidualDenseBlock_5C(nf, gc) self.RDB2 = ResidualDenseBlock_5C(nf, gc) self.RDB3 = ResidualDenseBlock_5C(nf, gc) def forward(self, x): out = self.RDB1(x) out = self.RDB2(out) out = self.RDB3(out) return out * 0.2 + x
标签:__,nn,self,nf,111111,bias,gc From: https://www.cnblogs.com/yyhappy/p/17474514.html